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Abstract

It has long been recognized that the forces that lead to the agglomeration of economic activity

and to aggregate growth are similar. Unfortunately, few formal frameworks have been advanced

to explore this link. We critically discuss the literature and present a simple framework that

can circumvent some of the main obstacles we identify. We discuss the main characteristics of

an equilibrium allocation in this dynamic spatial framework, present a numerical example to

illustrate the forces at work, and provide some supporting empirical evidence.

1. INTRODUCTION

Economists have long discussed the relationship between agglomeration and growth. As Lucas

(1988) points out, not only are both phenomena related to increasing (or constant) returns to scale,

but in many contexts agglomeration forces are the source of the increasing returns that lead to

growth. Krugman (1997), after providing a detailed overview of the di¤erent economic forces that

can explain both phenomena, identi�es probably the most important challenge of this literature: the

di¢ culty of developing a common framework that incorporates both the spatial and the temporal

dimensions. In other words, what is needed is a dynamic spatial theory. In this brief paper, we

review the recent literature that has emerged to deal with some of the main links between growth

and regional economics, discuss the problems that this literature faces, sketch a framework that we

believe can be used to further explore the links between the spatial and temporal dimensions, and

provide some empirical evidence consistent with the forces present in this framework.

�Prepared for the conference �Regional Science: The Next Fifty Years,� on the occasion of the 50th anniversary

of the Journal of Regional Science.
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The dynamics of the distribution of economic activity in space have been studied using three

distinct approaches. A �rst family of models consists of dynamic extensions of New Economic Geog-

raphy models. These models tend to have a small number of locations, typically two. Agglomeration

is driven by standard Krugman (1991) pecuniary externalities operating through real wages. The

models are usually made dynamic by adding innovation in product quality as in Grossman and Help-

man (1991 a,b). There is a wide variety of particular speci�cations, some of which include capital

accumulation or other forms of innovation. Baldwin and Martin (2004) provide a nice survey of

this literature. They highlight the possibility of �catastrophic�agglomeration, implying that only

one region accumulates factors. More generally, agglomeration and innovation reinforce each other,

creating growth poles and sinks. The emergence of regional imbalances is accompanied by faster

aggregate growth and higher welfare in all regions.1

The contribution of this �rst strand of the literature is important, as it enhances our understanding

of the common forces underlying growth and agglomeration. However, the spatial predictions are

rather limited. The focus on a small number of locations does not allow this literature to capture

the richness of the observed distribution of economic activity across space, thus restricting the way

these models are able to connect with the data. It advances statements about how unequal two

regions are, but there is no sense in which one can have a hierarchy of agglomerated areas. One

could of course try to generalize these models to more than a few regions. The problem is that

the analytical tractability breaks down when one deals with more than two or three regions. Some

progress could be made numerically, using dynamic extensions of continuous space New Economic

Geography frameworks, like the one in Fujita et al. (2001, Chapter 17), but little has been done so

far. Therefore, these models remain mostly useful as analytical tools, rather than as guides to doing

empirical work.

A second family of models aims to explain the distribution of city sizes. In general, this litera-

ture only models, if at all, space within cities, but not the location of cities across space. Early

contributions include Black and Henderson (1999) and Eaton and Eckstein (1997). Black and Hen-

derson (1999) propose a model of a dynamic economy with cities. Increasing returns in the form of

externalities create cities and imply, apart from knife-edge parameter conditions, increasing returns

at the aggregate level. Hence, as in the papers above, agglomeration leads to explosive growth. In

contrast to the �rst strand of the literature, these theories have the advantage of explicitly modeling

1Readers interested in this strand of the literature should consult Baldwin and Martin (2004), Fujita and Thisse

(2002, Chapter 11), and some of the particular papers, like Baldwin et al. (2001) and Martin and Ottaviano (1999

and 2001).
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the cities in each location and allowing for heterogeneity in city characteristics. This comes at the

cost of a black box agglomeration e¤ect in the form of a production externality.

Within this second strand of the literature, the contribution of Gabaix (1999a) is key in establishing

the link between the dynamic growth process of cities and the observed distribution of city sizes.

He shows that Zipf�s Law for cities � the size distribution is approximated by a Pareto distribution

with coe¢ cient one � can be explained by models that imply cities exhibiting scale-independent

growth. For our purposes, the interesting part of this contribution is not so much the particular

size distribution this growth process leads to, but rather the link it establishes between the dynamic

growth process of particular production sites and the invariant distribution of economic activity in

space. It is the growth process that leads to agglomeration (in the form of a size distribution with

a fat left-tail with many large cities), and not the other way around. Following Gabaix (1999a),

many papers have built on this basic insight, which had already been used in other applications in

macroeconomics. Eeckhout (2004), for example, proposes a simple model in which cities grow by

receiving scale-independent shocks, and uses the Central Limit Theorem to show that the resulting

size distribution is log normal.

Gabaix (1999a, b) and Eeckhout (2004) postulate the growth rate of cities; they do not propose

an economic theory of this growth process. The last generation of models in this second strand

of the literature addresses this shortcoming by successfully establishing a link between economic

characteristics that determine the growth process and economic agglomeration in cities. Duranton

(2007) does so by proposing a growth process through the mobility of industries across cities as

a result of innovations in particular sectors. Rossi-Hansberg and Wright (2007) also produce a

particular city growth process as a result of adjustment in optimal city sizes and city entry. Córdoba

(2008) discusses general properties that these models need to satisfy in order to yield a growth

process consistent with particular characteristics of invariant distributions, like Zipf�s Law. Some

of these papers also establish a reverse link between the growth process and agglomeration. In

Rossi-Hansberg and Wright (2007), for example, it is the organization of economic activity in cities

that leads to the aggregate constant returns to scale necessary to generate balanced growth. In

this sense, agglomeration of economic activity in a particular number and size of cities generates

aggregate balanced growth.

The main limitation of the dynamic frameworks in this second strand of the literature is the lack

of geography. Production happens in particular sites, but these sites are not ordered in space and the

trade links between them are either frictionless or uniform. Cities are the units in which production
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is organized. The internal structure of cities is sometimes modeled as an area with land as a factor

of production and agents facing transport and/or commuting costs. However, geography is only

modeled within cities, not across them. In this sense, these models do not present dynamic spatial

theories that can be contrasted to the observed distribution of economic activity in space.

The third strand of the dynamic spatial literature incorporates fully forward-looking agents and

factor accumulation into models with a continuum of geographically ordered locations.2 It also

allows for either capital mobility or some form of spillovers or di¤usion between regions (see, e.g.,

Boucekkine et al., 2009, Brock and Xepapadeas, 2008a, b, Brito, 2004, and Quah, 2002). Apart

from these interactions, points in space are still completely isolated from each other. We review the

particular structure of these problems in Section 3 below. For now it su¢ ces to say that progress

here has been mostly restricted to formulating the necessary and su¢ cient conditions for e¢ cient

allocations and, in some cases, the corresponding conditions characterizing rational expectation

equilibria. Few substantive results have been advanced.

The remainder of this paper is organized as follows. In Section 2 we go further into the importance

of developing spatial frameworks that can be compared with the data, some of the di¢ culties of doing

this, and the comparison with trade frameworks, like that in Eaton and Kortum (1999). Section 3

discusses some of the setups with continuous space that have been analyzed for the case of forward-

looking agents. Section 4 then proposes a simple endogenous growth spatial framework in which

innovation decisions are optimally not forward-looking, and it uses a numerical example to shed

light on the di¤erent forces present in this framework. Section 5 presents some basic evidence from

the US on the forces highlighted in Section 4, and Section 6 concludes.

2. THE IMPORTANCE OF SPACE

Incorporating geographically ordered space (or land) is important for two main reasons. Land at

a particular location is a rival and non-replicable input of production, and land is geographically

ordered in a way that matters for economic activity. The latter claim has been documented exten-

sively: patents cite geographically close-by patents (Ja¤e et al., 1993), �rms co-locate (Ellison and

Glaeser, 1997, and Duranton and Overman, 2005 and 2008), and in general there is ample evidence

2We discuss in more detail the importance of using a continuum of locations in the next section, but the evidence

seems to suggest that the observed patterns are very di¤erent when land, and not only cities, is incorporated into the

analysis. In particular, Holmes and Lee (2008) show that the distribution of employment across equal sized squares in

space has a signi�cantly lower tail than the one for cities. They also show that for space, and in contrast with cities,

growth rates are not independent of scale (Gibrat�s Law).
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of substantial trade costs, mobility costs, commuting costs and other costs that increase with dis-

tance. The use of land as a non-replicable input of production requires, perhaps, some additional

explanation. Economic activity at a particular location is, of course, endogenous, so the factors

operating at a given location can be replicated. Nevertheless, since land is an input of production,

increasing factors at a given location leads to decreasing returns to scale and therefore dispersion.

It is obviously di¢ cult to incorporate space into dynamic frameworks because it increases the

dimensionality of the problem. Another di¢ culty of incorporating a continuum of locations in

geographic space is that, in the presence of mobility frictions like transport or commuting costs,

clearing factor and goods markets is not trivial. The reason is that how many goods or factors are

lost in transit depends on mobility and trade patterns, which in turn depend on factor prices that are

the result of market clearing. Hence, to impose market clearing it is necessary to know the number

of goods lost in transit. That is, factor prices at each location depend on the equilibrium pattern of

trade and mobility at all locations. This yields a problem that in many cases is intractable.

The trade literature has circumvented this di¢ culty by analyzing the case of a �nite (though

potentially large) number of locations in the presence of random realizations of productivity for a

continuum of goods (see, e.g, Eaton and Kortum, 2002). In such a framework, the only relevant

equilibrium variable is the share of exported and imported goods, which is well determined by the

properties of the distributions of the maximum of the productivity realizations. This has proven

to be an e¤ective way to deal with this di¢ culty. However, it does not allow us to talk about

trade in particular sectors, since only aggregate trade �ows are determined in equilibrium. This is

an important drawback if we want to study geography models that focus on spatial growth across

industries. Since the empirical evidence shows that di¤erent sectors exhibit very di¤erent spatial

growth patterns, this is a relevant issue (see, e.g., Desmet and Fafchamps, 2006, and Desmet and

Rossi-Hansberg, 2009a).

Another way of solving this problem is to clear markets sequentially. Suppose space is linear

and compact. Then we can start at one end of the space interval and accumulate production minus

consumption in a given market (properly discounted by transport or commuting costs) until we reach

the end of the interval. At the boundary, �excess supply�has to be equal to zero in order for markets

to clear. This method, proposed in Rossi-Hansberg (2005), is fairly easy to apply, but it can only

be used in one-dimensional (or two-dimensional and symmetric) compact setups. In Section 4 we

sketch a model that uses this form of market clearing. Extending this formulation to non-symmetric

two-dimensional spatial setups (like reality!) is a theoretical challenge.
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3. SPATIAL MODELS WITH FORWARD-LOOKING AGENTS

The few papers that have studied a fully dynamic setup with a continuum of locations normally

focus on the problem of a planner who allocates resources. We present two examples below. Spatial

interactions are introduced in two di¤erent ways: a �rst one by allowing for capital mobility, and a

second one by assuming a spatial capital externality. Neither of them introduces land as an input

of production, although given that technology is not necessarily assumed to be constant returns to

scale, it could be easily incorporated through absentee landlords.

The spatial setup is the real line and time is continuous. Let c (`; t) denote consumption, L (`; t)

population, and k (`; t) capital at location ` and time t. A central planner then maximizes the sum of

utilities of all agents, all of whom discount time at rate �. Production requires only capital, k (`; t) ;

which depreciates at rate �. Total factor productivity is given by Z (`; t). The change in capital at

a particular location is therefore equal to production minus depreciation minus consumption plus

the capital received from other locations. Boucekkine et al. (2009) show how this last term can

be expressed as the second partial derivative of capital across locations: essentially, it is just the

di¤erence between the �ow of capital from the regions to the left minus the �ow of capital �owing

to the regions to the right. This law of motion of capital, a parabolic di¤erential equation, and in

particular the spatial component entering through the second order term, introduces space into the

problem. In addition, capital at all locations at time 0 is assumed to be known, and since the real

line is in�nite, a transversality condition on capital is also required. Hence, the problem solved by

Boucekkine et al. (2009) becomes:

max
c

Z 1

0

Z
R
U (c (`; t))L (`; t) e��td`dt

subject to

@k (`; t)

@t
� @2k (`; t)

@`2
= Z (`; t) f(k (`; t))� �k (`; t)� c (`; t)

k(`; 0) = k0 (`) > 0

lim
`!�1

@k (`; t)

@`
= 0:

Brock and Xepapadeas (2008b) and Brito (2004) solve similar problems, but with di¤erent pref-

erences. In fact, Boucekkine et al. (2009) show that for general preferences this is an �ill-posed�

problem in the sense that the initial value of the co-state does not determine its whole dynamic
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path. This is a general problem in spatial setups. One can address this issue either by considering

particular solutions (like the type of cyclical perturbation analysis found in many studies) or by

putting strong restrictions on preferences. Boucekkine et al. (2009) show that some progress can be

made by focusing on the linear case.

Brock and Xepapadeas (2008b) study a similar problem in a compact interval R, given by

max
c

Z 1

0

Z
R

U (k (`; t) ; c (`; t) ; X (`; t))L (`; t) e��td`dt

subject to

@k (`; t)

@t
= f (k (`; t) ; c (`; t) ; X (`; t))

X (`; t) =

Z
`2R

! (`� `0) k (`0; t) d`0

k (`; t) = k0 (`) > 0

where X (`; t) is an externality that a¤ects production and utility, and f now refers to production

minus consumption plus an additional term re�ecting the direct e¤ect of the externality on the law

of motion of capital. In contrast to the problem of Boucekkine et al. (2009), there is no capital

mobility, which eliminates a huge di¢ culty. Instead, the spatial component is introduced through

the externality, which is just a kernel of capital at all locations. This is an interesting problem, since

it incorporates di¤usion, although not mobility. As in the previous case, the authors can derive the

Pontryagin necessary conditions for an optimum and, under more restrictive assumptions, su¢ cient

conditions. Solving for stable steady states remains, nevertheless, an exercise of �nding whether or

not uniform steady states are stable. This is progress, although it does not amount to a complete

analysis of the problem.

The lack of a complete solution to the problems above is hardly the fault of the authors working

on them. These problems are complicated and, absent more structure, it is hard to extract general

insights. The main problem seems to be that agents are forward-looking and thus need to understand

the whole future path to make current decisions. Modeling space implies understanding the whole

distribution of economic activity over space and time for each feasible action. One way around this

di¢ culty is to impose enough structure � either on the di¤usion of technology or on the mobility

of agents and land ownership � so that agents do not care to take the future allocation paths into

account, given that they are out of their control and do not a¤ect the returns from current decisions.

In the next section we present an example of such a framework.
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4. AN ALTERNATIVE MODEL WITH FACTOR MOBILITY AND DIFFUSION

In Desmet and Rossi-Hansberg (2009b) we introduce a model in which locations accumulate

technology by investing in innovation in one of two industries and by receiving spillovers from other

locations. The key to making such a rich structure computable is that di¤usion, together with labor

mobility and diversi�ed land ownership, implies that agents and �rms need not be forward-looking

when they decide where to locate and how much to invest in innovation every period. The result is

a model in which locations are changing occupations and employment density continuously, but in

the aggregate the economy converges on average to a balanced growth path.

Desmet and Rossi-Hansberg (2009b) study an economy with two sectors and analyze the sectoral

interaction in generating innovation. They use the model to explain the observed evolution in

the spatial distribution of economic activity in the US. To give a sense of the forces at work in

that model, we present here a simpler version of the setup with only one good (and therefore no

specialization decision or cross-industry innovation e¤ects). In this version of the model, factor

mobility is frictionless, and trade is just the result of agents holding a diversi�ed portfolio of land

across locations.

Land is given by the unit interval [0; 1], time is discrete, and total population is �L. We divide

space into �counties�(connected intervals in [0; 1]), each of which has a local government. Agents

solve

max
fc(`;t)g10

E
1X
t=0

�U(c (`; t))

subject to

w (`; t) +
�R(t)
�L

= p (`; t) c (`; t) for all t and `:

where p (`; t) is the price of the consumption good and w (`; t) denotes the wage at location ` and

time t. Total land rents per unit of land at time t are denoted by �R(t), so that �R(t)=�L is the dividend

from land ownership received by agents, assuming that agents hold a diversi�ed portfolio of land in

all locations. Free mobility implies that utilities equalize across regions each period.

The inputs of production are land and labor. Production per unit of land is given by

x (L (`; t)) = Z (`; t)L (`; t)
�
;

where � < 1; Z (`; t) denotes TFP, and L (`; t) is the amount of labor per unit of land used at

8



location ` and time t. The problem of a �rm at location ` is thus given by

max
L(`;t)

(1� � (`; t)) (p (`; t)Z (`; t)L (`; t)� � w (`; t)L (`; t)) ;

where � (`; t) denotes taxes on pro�ts charged by the county government.

The government of a county can decide to buy an opportunity to innovate by taxing local �rms

� (`; t). In particular, a county can buy a probability � � 1 of innovating at a cost  (�) per unit of

land. This cost  (�) is increasing and convex in �, and proportional to wages. If a county innovates,

all �rms in the county have access to the new technology. A county that obtains the chance to

innovate draws a technology multiplier z(`) from a Pareto distribution with lower bound 1, leading

to an improved level of TFP, z`Zi (`; t), where

Pr [z < z`] =

�
1

z

�a
:

The risk-neutral government of county G, with land measure I, will then maximize

max
�(`;t)

Z
G

� (`; t)

a� 1 p (`; t)Z (`; t)L (`; t)
�
d`� I (�) (1)

The bene�ts of the extra production last only one period. Since a county is by assumption small and

innovation di¤uses geographically, a county�s innovation decision today does not a¤ect its expected

level of technology tomorrow. This implies that governments need not be forward-looking when

choosing the optimal level of investment in innovation. Note the scale e¤ect in the previous equation:

high employment density locations will optimally innovate more (and so will high-price and high-

productivity locations). This is consistent with the evidence presented by Carlino et al. (2007).

They show that a doubling of employment density leads to a 20% increase in patents per capita.

The timing of the problem is key. Innovation di¤uses spatially between time periods. So, before

the innovation decision, location ` has access to

Zi (`; t+ 1) = max
r2[0;1]

e��j`�rjZ (r; t)

which of course includes its own technology. Agents then costlessly relocate, ensuring that utility

is the same across all locations. After labor moves, counties invest in innovation. Assuming wages

are set before the innovation decision, the fact that agents hold a diversi�ed portfolio of land in

all locations implies that they need not be forward-looking when deciding where to locate. Note

also that by holding a diversi�ed portfolio of land, rents are redistributed from high-productivity

to low-productivity locations. As a result, high-productivity locations run trade surpluses, and

low-productivity locations run trade de�cits.
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In addition to the geographic di¤usion of innovations, transport costs are another source of agglom-

eration. For simplicity we assume iceberg transport costs, so if one unit of the good is transported

from ` to r, only e��j`�rj units of the good arrive in r. Hence, if goods are produced in ` and

consumed in r, p (r; t) = e�j`�rjp (`; t). As described in Section 2, goods markets clear sequentially.

De�ne Hi (`; t) by Hi (0; t) = 0 and by the di¤erential equation

@H (`; t)

@`
= � (`; t)x (`; t)� c (`; t)

 X
i

� (`; t)L (`; t)

!
� � jH (`; t)j :

Then, the goods market clears if H (1; t) = 0. The labor market clearing condition is given byZ 1

0

L (`; t) d` = L, all t.

Computing an equilibrium of this economy is clearly feasible. Given initial productivity functions,

we can solve for production in all locations, for the wages that equalize utility and clear the national

labor market, for the prices that clear the goods market, and for the resulting average land rents,

which are added to agents�income. This determines the location of agents and the investments in

innovation. After productivity is realized, we compute actual production, actual distributed land

rents, and trade. Overnight there is di¤usion, which determines the new productivity function.

Since decisions are based on current outcomes only, computing an equilibrium involves solving a

functional �xed point each period, but it does not involve calculating rational expectations.

What can we learn from this model? Although the model is extremely simple, it has two forces

that are interesting when thinking about spatial dynamics. On the one hand, although technology

is constant returns in land and labor, it exhibits local decreasing returns to labor, because locally

land cannot be replicated. This is a form of local congestion that spreads employment across space

given identical technology levels. On the other hand, agglomeration is the result of the di¤usion of

technology. Areas with high levels of employment innovate more, since the incentives to innovate

are larger there. Since di¤usion decreases with distance, areas close to high-employment clusters

become high-productivity areas. This attracts employment and leads to more innovation. As usual,

the balance between the congestion and agglomeration forces determines the spatial landscape.

The same forces that lead to particular spatial employment patterns also explain aggregate growth.

Dispersion implies more uniform, but smaller, incentives to innovate. In contrast, concentration

implies that less locations innovate, but each of them innovates more. More di¤usion implies that

the second (extensive) e¤ect is less important and that aggregate growth is generally greater.

Perhaps surprisingly, higher trade costs imply more concentrated production, which in turn may
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lead to more growth. Although higher trade costs imply static e¢ ciency losses, they also lead to

dynamic gains through increased concentration and innovation, an e¤ect reminiscent of the one in

Fujita and Thisse (2003). A clear empirical implication emerges from the theory: more concentration

of employment in surrounding areas leads to higher innovation and growth. This e¤ect is the

result of two forces. First, more concentration as a result of, say, transport costs, leads to more

innovation. Second, more innovation in certain areas leads, through di¤usion, to productivity growth

in neighboring areas (see, e.g., Ciccone (2002) for evidence on this mechanism).3

The model presented above has only one industry, so by construction it is not suited to study

cross-industry e¤ects. In Desmet and Rossi-Hansberg (2009b) we present a version of the model with

two industries. In that case, another spatial link between the distribution of economic activity and

growth emerges. Locations near clusters of �rms in one sector, say, manufacturing, experience high

prices of the other good, say, services, since their proximity to manufacturing locations allows them

to sell services paying small trade costs. This channel works through trade: neighboring areas that

are specialized in manufacturing will import services, thus pushing up the relative price of services.

As a result, locations close to manufacturing clusters tend to have high employment and high prices

in services and therefore will tend to innovate in services. Hence, being near clusters in the other

industry is also a source of growth and innovation. However, note that this force operates through

imports, whereas the di¤usion force operates through employment. In the next section we present

some evidence supporting these predictions.

Figure 1 presents a numerical simulation from the framework with two sectors, manufacturing

and services. The model used to compute the �gure is identical to the one presented in Desmet and

Rossi-Hansberg (2009b), and we use the basic calibration in that paper with a di¤usion parameter

� = 50: The �gure shows a contour map of productivity in time and space. Space is the unit interval,

and we run the model for 100 periods. We use initial conditions that imply that locations close to

the upper bound are good in manufacturing, whereas all locations have an initial productivity in

services equal to 1. These initial conditions imply that manufacturing starts innovating �rst and

only in the upper regions. As we argued, di¤usion implies that regions that innovate are clustered.

As a result, productivity growth happens in concentrated areas. This is an expression of the �rst

e¤ect discussed above.

In period 63 some scattered service areas, which are close to manufacturing clusters, start in-

3Duranton and Overman (2005, 2008) present detailed and strong evidence of co-location in the UK. This is some

of the best evidence of regional agglomeration mechanisms within and between industries. Unfortunately, it does not

directly address the link between growth and regional agglomeration.
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novating. This innovation happens in clusters too and, more important, next to manufacturing

areas. Relative prices of services are high next to clusters of manufacturing production as a result

of transport costs and trade. This leads to endogenously higher employment and more innovation

in services. This is an expression of the second e¤ect discussed above.
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Figure 1: An Example

It is important to understand how productivity growth in the service sector gets jump-started.

Assuming an elasticity of substitution less than one, the sector with the higher relative productivity

growth loses employment share. Initially, when only manufacturing is innovating, the share of

employment in services is gradually increasing. Since gains from innovation in a given sector depend

on employment in that sector, at some point the service sector becomes large enough, allowing for

innovation to take o¤. This mechanism provides an endogenous stabilization mechanism that tends

to increase the productivity of one of the sectors when the economy experiences fast productivity
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growth in the other sector. The result is that by period 100 both sectors are growing at a roughly

constant rate of around 3%.

5. SOME EMPIRICAL EVIDENCE

The model in Section 4 illustrates two main forces that mediate spatial dynamics. The �rst one is

a �spillover�e¤ect by which locations close to other locations in the same sector grow faster because

they bene�t from innovation investments close by. The second is a �trade�e¤ect by which locations

close to areas that import a particular good experience high prices for that good, thus providing

incentives to innovate in that sector. If these e¤ects are the cornerstone of spatial dynamics, as the

model above postulates, we should be able to �nd them in the data.

Using US county data for the period 1980-2000 from the Bureau of Economic Analysis, we �rst

construct two kernels to measure the importance of the �spillover�and the �trade�e¤ect. For each

county, the �rst kernel sums employment over all other counties, exponentially discounted by dis-

tance. To compute the second kernel, we �rst measure county imports in a particular sector as the

di¤erence between the county�s consumption and production in that sector.4 For each county, the

second kernel then sums sectoral imports over all counties, exponentially discounted by distance.5

This constitutes a measure of the excess demand experienced by a county in a particular sector.

With these two kernels in hand, we run the following regression:

logEmpi`(t+ 1)� logEmpi`(t) = �+ �1 logEmp
i
`(t) + �2 log(EK

i
`(t)) + �3 log(IK

i
`(t))

where Empi`(t) denotes employment, EK
i
`(t) the employment kernel, and IK

i
`(t) the imports kernel,

for sector i, county ` and period t.6 ;7

Table 1 presents the results for di¤erent discount rates. We �x the discount rate for the employ-

ment kernel at 0:1 (implying the e¤ect declines by half every 7 km), and let the decay parameter for

4A county�s consumption in a given sector is obtained by multiplying the national share of earnings in that sector

by the county�s total earnings. A county�s production in a given sector is simply measured by its earnings in that

sector. Note that this calculation does not take into account international trade, most of which is in goods. However,

since this changes the level of imports in a similar way in all counties, it should not a¤ect our calculations signi�cantly.
5Note that, according to the theory, the discount rate should be related to transport costs.
6Since the import kernel measures a discounted sum of imports in a given sector, this measure may be positive or

negative. We can therefore not simply take the natural logarithm. In the regression we use the natural logarithm of

the kernel when the kernel is positive and minus the natural logarithm of the absolute value of the kernel when it is

negative.
7Since we include the log of employment in county ` as a separate regressor, the employment kernel does not

include employment in county `. In contrast, the import kernel does include imports by county `.
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the import kernel vary between 0:07 and 0:14 (implying the e¤ect declines by half every 5 to 10 km).

We present four sets of regressions, the �rst two present the results for the service sector for the

decades 2000-1990 and 1990-1980, and the last two present the same regressions for the industrial

sector (manufacturing plus construction).

Decay Emp. Kernel: 
Decay Imp. Kernel: 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Half-Life Imp. Kernel (km): 9.9 8.7 7.7 6.9 6.3 5.8 5.3 5.0

Dependent variable: Log(Service Employment 2000)-Log(Service Employment 1990)

Log(Serv. Emp. 1990) 0.00346 0.00383 0.00409 0.00426 0.0043 0.00443 0.00451 0.00458
[1.29] [1.43] [1.53] [1.59] [1.61] [1.66]* [1.69]* [1.72]*

Log(Serv. Emp. Kernel 1990) 0.00624 0.00603 0.00587 0.00576 0.00572 0.00563 0.00557 0.00552
[4.55]*** [4.40]*** [4.28]*** [4.20]*** [4.17]*** [4.11]*** [4.07]*** [4.03]***

Log(Serv. Imp. Kernel 1990) -0.00028 0.00014 0.00044 0.00065 0.00073 0.00089 0.00101 0.00113
[0.74] [0.36] [1.15] [1.67]* [1.85]* [2.26]** [2.55]** [2.87]***

Constant 0.18715 0.18406 0.18195 0.1805 0.18018 0.17918 0.17855 0.17789
[8.08]*** [7.95]*** [7.86]*** [7.80]*** [7.79]*** [7.75]*** [7.73]*** [7.71]***

Observations 2277 2277 2277 2277 2277 2277 2277 2277
R-squared 0.0131 0.013 0.0135 0.0141 0.0144 0.0151 0.0157 0.0165

Dependent variable: Log(Service Employment 1990)-Log(Service Employment 1980)

Log(Serv. Emp. 1980) 0.04007 0.04012 0.04028 0.04034 0.04026 0.04024 0.04023 0.0402
[13.89]*** [13.91]*** [13.99]*** [14.02]*** [14.00]*** [14.00]*** [14.00]*** [13.99]***

Log(Serv. Emp. Kernel 1980) 0.01013 0.01003 0.00987 0.00977 0.00977 0.00973 0.00975 0.00978
[6.89]*** [6.82]*** [6.72]*** [6.67]*** [6.67]*** [6.65]*** [6.66]*** [6.68]***

Log(Serv. Imp. Kernel 1980) 0.00153 0.00176 0.00208 0.00232 0.00236 0.00249 0.00251 0.00245
[3.72]*** [4.22]*** [4.96]*** [5.49]*** [5.58]*** [5.86]*** [5.90]*** [5.76]***

Constant -0.19616 -0.19598 -0.19655 -0.19644 -0.19573 -0.19524 -0.19523 -0.19522
[8.12]*** [8.11]*** [8.15]*** [8.15]*** [8.12]*** [8.11]*** [8.11]*** [8.11]***

Observations 2616 2616 2616 2616 2616 2616 2616 2616
R-squared 0.1191 0.1204 0.1227 0.1245 0.1248 0.1259 0.1261 0.1255

Dependent variable: Log(Industry Employment 2000)-Log(Industry Employment 1990)

Log(Ind. Emp. 1990) -0.053 -0.0526 -0.05222 -0.05191 -0.05166 -0.05162 -0.0514 -0.05125
[12.70]*** [12.59]*** [12.49]*** [12.41]*** [12.34]*** [12.32]*** [12.26]*** [12.21]***

Log(Ind. Emp. Kernel 1990) 0.00624 0.00617 0.00607 0.00602 0.00605 0.00592 0.00584 0.00567
[2.08]** [2.05]** [2.02]** [2.00]** [2.01]** [1.97]** [1.94]* [1.88]*

Log(Ind. Imp. Kernel 1990) 0.00626 0.00624 0.00628 0.00638 0.00639 0.00632 0.00633 0.00626
[10.71]*** [10.54]*** [10.49]*** [10.59]*** [10.53]*** [10.36]*** [10.36]*** [10.22]***

Constant 0.56213 0.55913 0.55678 0.55473 0.55276 0.55297 0.55164 0.55117
[19.06]*** [18.92]*** [18.82]*** [18.74]*** [18.65]*** [18.64]*** [18.59]*** [18.55]***

Observations 2543 2543 2543 2543 2543 2543 2543 2543
R-squared 0.1221 0.121 0.1206 0.1213 0.1209 0.1197 0.1197 0.1187

Dependent variable: Log(Industry Employment 1990)-Log(Industry Employment 1980)

Log(Ind. Emp. 1980) -0.03445 -0.03389 -0.03371 -0.03338 -0.03287 -0.03256 -0.0323 -0.03207
[7.35]*** [7.22]*** [7.18]*** [7.10]*** [6.99]*** [6.92]*** [6.86]*** [6.81]***

Log(Ind. Emp. Kernel 1980) 0.03753 0.03786 0.03795 0.03806 0.0382 0.0382 0.03824 0.03828
[10.77]*** [10.89]*** [10.92]*** [10.97]*** [11.03]*** [11.05]*** [11.08]*** [11.10]***

Log(Ind. Imp. Kernel 1980) 0.00176 0.00223 0.0024 0.00265 0.00297 0.00313 0.00332 0.00348
[2.45]** [3.06]*** [3.26]*** [3.59]*** [4.00]*** [4.21]*** [4.47]*** [4.68]***

Constant 0.1047 0.09882 0.09711 0.09398 0.08948 0.0871 0.08495 0.08312
[3.21]*** [3.02]*** [2.97]*** [2.88]*** [2.73]*** [2.66]*** [2.60]*** [2.54]**

Observations 2857 2857 2857 2857 2857 2857 2857 2857
R-squared 0.0417 0.0428 0.0432 0.044 0.045 0.0456 0.0463 0.047

Absolute value of t statistics in brackets
* significant at 10%; ** significant at 5%; *** significant at 1%

0.1 (half life 7 km)

Table 1: The E¤ect of Employment and Import Kernels on US Employment Growth Rates
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To illustrate our results, focus on the case of a decay parameter in the import kernel of 0:1

(identical to the one in the employment kernel). In services, we �nd that for the 1990s a 1% increase

in the initial employment kernel leads to a 0:006% increase in county service employment between

1990 and 2000. The coe¢ cient on the employment kernel does not change much across di¤erent

decay parameters and across both sectors. We obtain a di¤erent result for the 1980-1990 decade,

where the coe¢ cients are still positive and signi�cant, but the coe¢ cient in industry is substantially

larger.

We also �nd a positive and robust �trade�e¤ect. In 1980-1990 the e¤ect seems to be similar in both

industries. A 1% increase in the import kernel implies roughly a 0.002% increase in employment

growth over the decade. In the 1990s, the e¤ect is larger in industry and smaller in services. In

almost all speci�cations the �trade�e¤ect is positive and signi�cant. However, note that the model

above leaves out another potential e¤ect, namely, the growth e¤ect of easier access to inputs in the

same industry. This e¤ect would imply, on its own, negative coe¢ cients on the import kernel. The

only case in which we obtain such a negative coe¢ cient is when we use a very low spatial discounting

coe¢ cient for the import kernel of services in 1990-2000. Since in that case the negative coe¢ cient

is statistically insigni�cant, we conclude that the trade e¤ect seems to dominate the growth e¤ects

from easier access to inputs.8

Table 2 presents regressions similar to the ones in Table 1, but we now take sectoral earnings growth

as the dependent variable. The results are similar, and, if anything, the coe¢ cients are larger than

for employment growth. According to the theory this should be the case, since the productivity and

employment e¤ect on innovation are complementary, as are the price and employment e¤ects (see

Equation 1). As before, for virtually all decay parameters we �nd positive and signi�cant �spillover�

and �trade�e¤ects.

6. CONCLUSION

In this paper we have discussed the theoretical problems involved in the study of spatial dynamics.

The literature consists of a set of frameworks that have only been partially understood and analyzed.

To deal with some of the main obstacles in this literature, we have presented a simple framework

that allowed us to underscore two key links between space and time, for which we have provided

empirical support. In particular, we have shown that both the �spillover�and the �trade�innovation

8Dumais, et al. (2002) provide �rm-level evidence of a �spillover�e¤ect in the manufacturing industry. For a detailed

discussion of the e¤ect of current employment on sectoral growth rates see Desmet and Rossi-Hansberg (2009a).
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e¤ects seem to be present in US county data.

Decay Emp. Kernel: 
Decay Imp. Kernel: 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Half-Life Imp. Kernel (km): 9.9 8.7 7.7 6.9 6.3 5.8 5.3 5.0

Dependent variable: Log(Service Earnings 2000)-Log(Service Earnings 1990)

Log(Serv. Emp. 1990) 0.04436 0.04472 0.04494 0.04517 0.04518 0.04528 0.04532 0.04536
[12.86]*** [12.98]*** [13.06]*** [13.14]*** [13.15]*** [13.18]*** [13.20]*** [13.22]***

Log(Serv. Emp. Kernel 1990) 0.00964 0.00929 0.00905 0.00882 0.00874 0.00862 0.00854 0.00847
[5.15]*** [4.97]*** [4.84]*** [4.73]*** [4.68]*** [4.62]*** [4.58]*** [4.54]***

Log(Serv. Imp. Kernel 1990) 0.00062 0.00117 0.00156 0.00193 0.00204 0.00222 0.00237 0.00251
[1.22] [2.27]** [3.01]*** [3.70]*** [3.89]*** [4.21]*** [4.48]*** [4.73]***

Constant 0.08251 0.08013 0.07879 0.07725 0.07742 0.07682 0.07669 0.0765
[2.84]*** [2.77]*** [2.72]*** [2.67]*** [2.68]*** [2.66]*** [2.66]*** [2.65]***

Observations 2745 2745 2745 2745 2745 2745 2745 2745
R-squared 0.0911 0.0923 0.0936 0.0951 0.0956 0.0965 0.0972 0.098

Dependent variable: Log(Service Earnings 1990)-Log(Service Earnings 1980)

Log(Serv. Emp. 1980) 0.07938 0.07944 0.07965 0.0797 0.07957 0.07947 0.07941 0.07932
[20.86]*** [20.91]*** [20.99]*** [21.03]*** [21.02]*** [21.01]*** [21.00]*** [20.97]***

Log(Serv. Emp. Kernel 1980) 0.01383 0.01362 0.0134 0.01325 0.0132 0.01315 0.01316 0.01322
[7.12]*** [7.02]*** [6.92]*** [6.85]*** [6.83]*** [6.81]*** [6.82]*** [6.84]***

Log(Serv. Imp. Kernel 1980) 0.00241 0.00285 0.00326 0.0036 0.00375 0.0039 0.00394 0.00386
[4.43]*** [5.19]*** [5.89]*** [6.47]*** [6.73]*** [6.98]*** [7.04]*** [6.88]***

Constant -0.17965 -0.17902 -0.17955 -0.17907 -0.17744 -0.17611 -0.17554 -0.17503
[5.65]*** [5.64]*** [5.67]*** [5.66]*** [5.61]*** [5.57]*** [5.56]*** [5.54]***

Observations 2647 2647 2647 2647 2647 2647 2647 2647
R-squared 0.2021 0.2043 0.2066 0.2087 0.2097 0.2107 0.211 0.2103

Dependent variable: Log(Industry Earnings 2000)-Log(Industry Earnings 1990)

Log(Ind. Emp. 1990) 0.02312 0.02384 0.02453 0.02486 0.02524 0.02546 0.02584 0.02613
[3.32]*** [3.42]*** [3.52]*** [3.56]*** [3.62]*** [3.65]*** [3.70]*** [3.74]***

Log(Ind. Emp. Kernel 1990) 0.02212 0.02232 0.0225 0.02239 0.02251 0.02247 0.02252 0.02242
[4.36]*** [4.41]*** [4.45]*** [4.43]*** [4.45]*** [4.44]*** [4.46]*** [4.44]***

Log(Ind. Imp. Kernel 1990) 0.00607 0.0064 0.00673 0.00678 0.00688 0.00691 0.00704 0.00704
[6.15]*** [6.41]*** [6.67]*** [6.69]*** [6.72]*** [6.72]*** [6.83]*** [6.82]***

Constant 0.08837 0.08216 0.0765 0.07448 0.07109 0.06955 0.06641 0.06462
[1.85]* [1.72]* [1.60] [1.55] [1.48] [1.45] [1.38] [1.34]

Observations 2752 2752 2752 2752 2752 2752 2752 2752
R-squared 0.0271 0.0282 0.0295 0.0295 0.0297 0.0297 0.0302 0.0301

Dependent variable: Log(Industry Earnings 1990)-Log(Industry Earnings 1980)

Log(Ind. Emp. 1980) -0.02419 -0.02376 -0.02347 -0.02324 -0.02272 -0.02231 -0.02196 -0.02165
[3.89]*** [3.81]*** [3.76]*** [3.72]*** [3.63]*** [3.55]*** [3.49]*** [3.44]***

Log(Ind. Emp. Kernel 1980) 0.05805 0.05818 0.05834 0.05837 0.05852 0.0586 0.05868 0.05875
[12.87]*** [12.91]*** [12.96]*** [12.97]*** [13.02]*** [13.06]*** [13.09]*** [13.11]***

Log(Ind. Imp. Kernel 1980) 0.00168 0.00191 0.00213 0.00223 0.00249 0.00269 0.00287 0.00302
[1.84]* [2.07]** [2.28]** [2.37]** [2.64]*** [2.83]*** [3.01]*** [3.17]***

Constant 0.32398 0.31993 0.31693 0.31486 0.31006 0.30633 0.30321 0.30033
[7.36]*** [7.23]*** [7.15]*** [7.09]*** [6.96]*** [6.86]*** [6.78]*** [6.70]***

Observations 2758 2758 2758 2758 2758 2758 2758 2758
R-squared 0.0587 0.059 0.0593 0.0595 0.0599 0.0603 0.0607 0.061

Absolute value of t statistics in brackets
* significant at 10%; ** significant at 5%; *** significant at 1%

0.1 (half life 7 km)

Table 2: The E¤ect of Employment and Import Kernels on US Earnings Growth Rates

Undoubtedly, much work is still needed. First, we need to understand the basic frameworks better.

In particular, we need to extract a set of robust insights from a model rich enough to be compared

with the data. This requires a model with many locations and a distribution of economic activity
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varied enough to calculate standard statistics. Having two or three regions without land markets

is not enough. Second, we need better ways of comparing these statistics with the data. What

are the main attributes of the evolution of the distribution of economic activity in space that we

should compare with the data? What are the main statistics across industries that can inform us on

spatial-dynamic linkages? Essentially, we need a tighter connection with the data that goes beyond

reduced-form regressions like the ones in Section 5. These are mayor challenges for the next �fty

years of regional science!

17



REFERENCES

[1] Baldwin, R. E. and Martin, P., 2004. �Agglomeration and Regional Growth,� in: J. V. Henderson

& J. F. Thisse (ed.), Handbook of Regional and Urban Economics, 4, 2671-2711.

[2] Baldwin, R., Martin, P. and Ottaviano, G., 2001. �Global Income Divergence, Trade, and Industri-

alization: The Geography of Growth Take-O¤s,�Journal of Economic Growth, 6, 5-37.

[3] Black, D. and Henderson, V. 1999. �A Theory of Urban Growth,� Journal of Political Economy,

107, 252-284.

[4] Boucekkine, R., Camacho, C., and Zou, B., 2009. �Bridging the Gap Between Growth Theory and

the New Economic Geography: The Spatial Ramsey Model,�Macroeconomic Dynamics, 13,

20-45.

[5] Brito, P., 2004. �The Dynamics of Growth and Distribution in a Spatially Heterogeneous World,�

Working Papers, Department of Economics, ISEG, WP13/2004/DE/UECE.

[6] Brock, W. and Xepapadeas, A., 2008a. �Di¤usion-induced Instability and Pattern Formation in

In�nite Horizon Recursive Optimal Control,�Journal of Economic Dynamics and Control, 32,

2745-2787.

[7] Brock, W. and Xepapadeas, A., 2008b. �General Pattern Formation in Recursive Dynamical Systems

Models in Economics,�MPRA Paper 12305, University of Munich.

[8] Carlino, G., Chatterjee, S. and Hunt, R., 2007. �Urban Density and the Rate of Invention,�Journal

of Urban Economics, 61, 389-419.

[9] Ciccone, A., 2002. �Agglomeration E¤ects in Europe,�European Economic Review, 46, 213-227.

[10] Córdoba, J., 2008. �On the Distribution of City Sizes,�Journal of Urban Economics, 63, 177-197.

[11] Desmet, K. and M. Fafchamps, 2006. �Employment Concentration across U.S. Counties, �Regional

Science and Urban Economics, 36, 482-509.

[12] Desmet, K. and E. Rossi-Hansberg, 2009a. �Spatial Growth and Industry Age,�Journal of Economic

Theory, forthcoming.

[13] Desmet, K. and E. Rossi-Hansberg, 2009b. �Spatial Development,�mimeo, Princeton University.

18



[14] Dumais, G., Ellison G. and Glaeser E. , 2002. �Geographic Concentration as a Dynamic Process,�

Review of Economics and Statistics, 84, 193-204.

[15] Duranton, G. 2007. �Urban Evolutions: The Fast, the Slow, and the Still,�American Economic

Review, 97, 197-221.

[16] Duranton G. and H Overman, 2008. �Exploring the Detailed Location Patterns of U.K. Manufac-

turing Industries Using Micro-Geographic Data,�Journal of Regional Science, 48, 213-243.

[17] Duranton G. and H Overman, 2005. �Testing for Localization Using Micro-Geographic Data,�Review

of Economic Studies, 72, 1077-1106.

[18] Eaton, J. and Kortum, S., 1999. �International Technology Di¤usion: Theory and Measurement,�

International Economic Review, 40, 537-570.

[19] Eaton, J. and Kortum, S., 2002. �Technology, Geography, and Trade,�Econometrica, 70, 1741-1779.

[20] Eaton, J. and Eckstein, Z., 1997. �Cities and Growth: Theory and evidence from France and Japan,�

Regional Science and Urban Economics, 27, 443-474.

[21] Eeckhout, J., 2004. �Gibrat�s Law for (All) Cities,�American Economic Review, 94, 1429-1451.

[22] Ellison, G. and Glaeser, E., 1997. �Geographic Concentration in U.S. Manufacturing Industries: A

Dartboard Approach,�Journal of Political Economy, 105, 889-927.

[23] Fujita M. and Thisse J., 2003. �Does Geographical Agglomeration Foster Economic Growth? And

Who Gains and Loses from It?,�Japanese Economic Review, 54, 121-145.

[24] Fujita M. and Thisse J., 2002. Economics of Agglomeration: Cities, Industrial Location, and Regional

Growth, 1st Edition, Cambridge University Press, Chapter 11, 388-432.

[25] Fujita M., Krugman P. and Venables, A., 2001. The Spatial Economy: Cities, Regions, and Inter-

national Trade, 1st Edition, Cambridge, MA: The MIT Press, Chapter 17, 309-328.

[26] Gabaix, X., 1999a. �Zipf�S Law for Cities: An Explanation,�Quarterly Journal of Economics, 114,

739-767.

[27] Gabaix, X., 1999b. �Zipf�s Law and the Growth of Cities,�American Economic Review, 89, 129-132.

[28] Grossman, G. and E. Helpman, 1991a. Innovation and Growth in the Global Economy, Cambridge,

MA: The MIT Press.

19



[29] Grossman, G. and E. Helpman, 1991b. �Quality Ladders and Product Cycles,�Quarterly Journal

of Economics, 106, 557-86.

[30] Holmes, T. and Lee S., 2008. �Cities as Six-By-Six-Mile Squares: Zipf�s Law?,� forthcoming in E.

Glaeser (ed.), The Economics of Agglomeration, Cambridge, MA: NBER.

[31] Ja¤e, A. , Trajtenberg, M. and Henderson, R., 1993. �Geographic Localization of Knowledge

Spillovers as Evidenced by Patent Citations,�Quarterly Journal of Economics, 108, 577-598.

[32] Krugman P., 1997. Development, Geography, and Economic Theory, 1st Edition, Cambridge, MA:

The MIT Press.

[33] Krugman P., 1991, �Increasing Returns and Economic Geography," Journal of Political Economy,

99, 483-499.

[34] Lucas, R. Jr., 1988. �On the Mechanics of Economic Development,�Journal of Monetary Economics,

22, 3-42.

[35] Martin, P. and Ottaviano, G., 1999. �Growing Locations: Industry Location in a Model of Endoge-

nous Growth,�European Economic Review, 43, 281-302.

[36] Martin, P. and Ottaviano, G., 2001. �Growth and Agglomeration,�International Economic Review,

42, 947-68.

[37] Quah, D., 2002. �Spatial Agglomeration Dynamics,�American Economic Review, 92, 247-252.

[38] Rossi-Hansberg, E. and M. Wright, 2007. �Urban Structure and Growth,� Review of Economic

Studies, 74, 597-624.

[39] Rossi-Hansberg, E., 2005. �A Spatial Theory of Trade,�American Economic Review, 95, 1464-1491.

20


