
The Future of Spatial Econometrics∗

Joris Pinkse† Margaret E. Slade‡

CAPCP

Department of Economics Department of Economics

The Pennsylvania State University The University of British Columbia

April 2009

Prepared for the 50th anniversary symposium of the Journal
of Regional Science held at the New York Federal Reserve

The purpose of this paper is threefold. First, we give an overview of the general
direction the spatial econometrics literature has taken without attempting to provide
a representative survey of all interesting work that has appeared. Second, we identify
a number of problems in spatial econometrics that are as yet unresolved. Finally,
we provide advocacy for the notion that new spatial econometric theory should be
inspired by actual empirical applications as opposed to be directed by what appears
to be the most obvious extension of what is currently available.

∗Margaret Slade’s research is supported by the Social Sciences and Humanities Research Council
of Canada. Joris Pinkse thanks the Human Capital Foundation for support. Joris Pinkse is an
extramural fellow of Tilburg University.

†(corresponding author) Center for Auctions, Procurements, and Competition Policy, Department
of Economics, The Pennsylvania State University, 608 Kern Graduate Building, University Park
16802, joris@psu.edu

‡m.slade@mac.com

mailto:joris@psu.edu
file:m.slade@mac.com


1

1. Introduction

Spatial econometrics has been in existence for decades, and the number and di-

versity of applications has grown at a rapid rate in recent years. To illustrate,

these include problems such as price competition among firms located in geographic

space (Pinkse, Slade, and Brett, 2002), demand for differentiated products located

in product–characteristic space (Pinkse and Slade, 2004), and spillovers among firms

whose R&D activities are located in product, technology, and geographic spaces (Ly-

chagin, Pinkse, Slade, and Van Reenen, 2009). Nevertheless, the theory is in many

ways in its infancy relative to the complexity of many applications.1 In this paper,

we sketch some of the problems that spatial econometricians face and, in some cases,

suggest possible solutions and directions for future research.

In a nutshell, the objective of spatial econometrics is to learn about the nature of

a function mn for which

(1) mn(A) = u,

where A is an n × d matrix whose i–th row contains the available data pertaining

to observation i and u is an n–dimensional independent and identically distributed

(i.i.d.) vector of errors. For the sake of convenience we will refer to i as a location

here, but it could equally be a (location, time) pair.2

There is no hope of estimating mn without making simplifying assumptions. Aside

from the fact that it is unclear what estimating a function that changes with the

sample size would mean, we would essentially be trying to estimate an n–dimensional

function with n × d arguments on the basis of a single draw A. We thus need to

restrict the function mn in some manner.

There are many ways of restricting mn and which restrictions are plausible depends

on the nature of the application. A large fraction of the theoretical literature is

1This situation is in sharp contrast to time–series econometrics, where the theory is well developed.
2It would be more precise to denote the location of observation i by a vector `i.
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dedicated to highly parsimonious fully parametric specifications such as the first order

spatial autoregressive model (SAR(1)) with regressors

(2) y = ψ0Wy + Xβ0 + u.

With (2), A = [y|X] and the entire vector u is often assumed to be independent of

the entire matrix X, the spatial weight matrix W is assumed known, and the errors

u are assumed to be i.i.d. normal (or possibly have some simple spatial dependence

relationship). The SAR(1) model is taken as an example here, but the criticism below

applies equally to other low order spatial ARMA processes, including ones in panel

data settings.

It is certainly true that estimation of the unknown coefficients in (2) is both

straightforward and efficient, provided of course that the model is correctly spec-

ified, the weight matrix W satisfies appropriate regularity conditions, and spatial

dependence is sufficiently weak. It is equally true that there are often interesting

features to the generally careful, rigorous and sometimes elegant theoretical work in

this area; a good example is Bao and Ullah (2007); see Anselin (1988) for a compre-

hensive but outdated list of work in this area. And yes, simple models like (2) can be

the most that some limited data sets will bear. But the most one will get out of the

SAR(1) model and its brethren is some idea of the sign and strength of the spatial

dependence among the elements of y, something that can be discovered equally well,

and usually better, with a test of spatial dependence.

The limitations of the SAR(1) model are endless. These include: i) the implausible

and unnecessary normality assumption, ii) the fact that if yi depends on spatially

lagged y’s, it may also depend on spatially lagged x’s, which potentially generates

reflection–problem endogeneity concerns (Manski, 1993), iii) the fact that the rela-

tionship may not be linear, and iv) the rather likely possibility that u and X are

dependent because of e.g. endogeneity and/or heteroskedasticity.
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Even if one were to leave aside all of these concerns, there remains the laughable

notion that one can somehow know the entire spatial dependence structure up to a

single unknown multiplicative coefficient ψ0. The comparison to the stationary time–

series case, on which the SAR model is based, does not apply. Indeed, for stationary

time series, a low–dimensional parametric formulation is often appropriate. But with

spatial data, stationarity is unlikely; data are not equally spaced; missing observations

can generate endogeneity; spatial observations are themselves often spatial aggregates;

it is unclear whether space grows, the density of observations increases, or both; the

dependence structure can change as new data are added; and the very locations can

themselves be endogenous.

There is a strand of the literature that removes some of the rough edges of models

like the SAR(1) by doing away with the normality assumption (e.g. Kelejian and

Prucha, 1999), replacing independence assumptions by conditional moment condi-

tions, allowing for some dependence between u and X and between different elements

of u (Brett and Pinkse, 2000), and indeed allowing for nonlinear parametric specifica-

tions (e.g. Conley, 1999; Lee, 2007; Pinkse, Slade, and Shen, 2006). Such procedures

typically require the estimation of an asymptotic variance using a procedure that ac-

counts for the spatial dependence (e.g. Kelejian and Prucha, 2007; Pinkse, Slade, and

Shen, 2006), of which the new and attractive procedure of Bester, Conley, Hansen,

and Vogelsang (2009) is both the most ambitious and requires the strongest assump-

tions. One can even achieve the semiparametric efficiency bound (Robinson, 2009b)

and improve the higher order properties of estimators in such models (Iglesias and

Phillips, 2008), much like in the case of i.i.d. data, e.g. Robinson (1987) and Newey

and Smith (2004), respectively. Robinson (2009a) contains results for nonparametric

regression estimation subject to spatial dependence. Some of these procedures rely

on asymptotic theory based on the assumption of exogenous locations (e.g. Jenish

and Prucha, 2009), others on abstract assumptions about the ability to group data

(Pinkse, Shen, and Slade, 2007).
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None of the above methods solves the basic problem of having to choose which

restrictions to impose on mn. There is no guarantee, indeed few reassurances, that

the restrictions imposed by any of the existing theoretical methods is suitable for a

given application.

We believe that the best way of extending spatial econometric theory in empirically

relevant directions is not to see how we can create ad hoc extensions to existing

theory or to simply translate existing time series methods to the spatial case, but

to shape the theory to suit particular classes of applications. Indeed, most of our

work has taken this approach (e.g., Pinkse, Slade, and Brett (2002), Pinkse and

Slade (2004), and Pinkse, Slade, and Shen (2006)). It is unrealistic to expect to be

able to conduct an empirical exercise with spatial data that is beyond criticism. In

particular, finding fault with any empirical work, no matter how carefully done, is

easy. But letting applications guide the theory does allow one to remove the serious

sources of misspecification, especially ones due to endogeneity.

The discussion above, and indeed the rest of the paper, highlights problems arising

from the analysis of spatial data. Perhaps it is therefore not surprising that in most

applied work the presence of spatial dependence is ignored altogether. But aside

from providing a theoretically interesting challenge and being empirically relevant,

spatial data are also easier than i.i.d. data in some important respects. The most

salient of these is the availability of instruments. Indeed, if a given instrument, say

zi, is orthogonal to the error ui and correlated with xi, then it is often arguably also

uncorrelated with error uj and correlated with xj at a location j near location i.

This means that, although endogeneity problems are often more severe, we tend to

have more instruments at our disposal and thus better methods of dealing with those

problems.

In what follows we highlight some specific problems that arise in spatial applica-

tions. Many of these are still waiting for good solutions. Where possible, we illustrate

problems in the context of a simple linear spatial model, but sometimes we need more
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complicated models to make our point. The examples are heavily biased towards our

own work and, since this is not intended as a survey, we do not come close to citing

all interesting articles that have appeared in the spatial literature.

The remainder of the paper is laid out as follows. The next section deals with de-

pendence structure and strength, some related identification issues, and distinguishing

between dependence and independence. Section 3 discusses the general issue of en-

dogeneity and some of its causes, section 4, which suggests new directions, highlights

discrete choice and partial identification, and finally, section 5 concludes.

2. Dependence Structure

2.1. Linear Spatial Dependence. Modeling the entire dependence structure of a

spatial data set accurately is a near impossible task. But suppose that we are willing

to assume that the spatial dependence relationship is in fact linear in the sense that

we are willing to write something like

(3) y = G(ψ0)y + Xβ0 + u,

where G(ψ0) is a matrix to be modelled and u satisfies a suitable conditional moment

condition. To simplify the discussion we ignore the possibility that y is also spatially

dependent on X as well as any endogeneity concerns.

In order to get anywhere, some restrictions must be placed on G(ψ0). One possibil-

ity that we have used is to let G be a matrix with zeroes on the diagonal and whose

off–diagonal elements are a function of the distance δij between observations i and j.

In other words, the (i, j) element for i 6= j is g(δij, ψ0).
3 Furthermore, ‘distance’ can

consist of a vector of measures and need not be symmetric in the sense that δij and

δji need not be the same.

There are limitations to restricting G in the way described above. First, it is

conceivable that the function g itself depends on n; this problem is comparatively

3See, e.g., Pinkse, Slade, and Brett (2002) and Pinkse and Slade (2004).



6

straightforward to address; see Pinkse, Slade, and Brett (2002). More importantly,

however, one could imagine that the strength of dependence between observations i

and j depends not only on δij, but also on the distance between i (or j) and other

observations. It may be possible to incorporate some of this by redefining δij as in

Pinkse, Slade, and Brett (2002).4

It is often reasonable, and it can be necessary, to impose some parametric form

on g. The SAR(1) model assumes among other things that g(δij, ψ0) = ψ0w(δij)

for some known function w. The only situation we can think of in which such an

assumption makes some modicum of sense is if δij is a binary measure, e.g. whether

(1) or not (0) two counties have a common border. Even in that example, however,

one can question the relevance of arbitrary administrative decisions pertaining to the

allocation of land to counties made a very long time ago to economic dependence

relationships today. Furthermore, there are issues relating to aggregation and choice

of location which are likely to generate endogeneity problems; see section 3.

An alternative possibility is to allow g to be nonparametric. The most straightfor-

ward way to estimate g is to use a series expansion

(4) g(δ) =
∞∑

=0

ψ0ε(δ),

where the ε–functionals are chosen by the econometrician and form a basis for the

function space that g belongs to. Substituting (4) into (3) yields

(5) y =
∞∑

=0

ψ0Wy + Xβ0 + u.

As is typical with series estimation, one estimates only the first Jn ψ–coefficients,

where Jn increases to infinity with the sample size, but more slowly. See Pinkse,

Slade, and Brett (2002) for a set of theoretical results and Pinkse, Slade, and Brett

(2002); Pinkse and Slade (2004); Pofahl (2007) for applications.

4In that paper, the notion of, for example, sharing a boundary or being the closest neighbor
depends on relationships with all other observations.
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2.2. Identification. Endogeneity, to be discussed in section 3, raises complicated

identification problems. Even without endogeneity, however, identification can be a

thorny issue in spatial models due to the reflection problem; see Manski (1993). The

reflection problem is especially problematic in models of social interactions (e.g. Man-

ski, 2000), but it also has implications for spatial regression models more generally.

Treating location as random, the argument in Manski (1993) in the current context

is essentially that in an SAR(1) model for observation i we have

(6) yi = ψ0

∑
j 6=i

wijyj + x′iβ0 + ui, i = 1, . . . , n,

that
∑

j 6=i wijyj resembles a nonparametric estimate of E[yi|`i], and that the coeffi-

cients in

(7) yi = ψ0E[yi|`i] + x′iβ0 + ui,

are not identified if E[yi|`i] and xi are collinear.

The situation is even more problematic if the x’s are also spatially lagged, leading

to something like

(8) yi = ψ0E[yi|`i] + x′iβ0 + E[x′i|`i]γ0 + ui.

Assuming E[ui|`i] = 0 a.s., it follows from (8) that

E[yi|`i] = E[x′i|`i]
β0 + γ0

1− ψ0

,

which in turn implies that the regressors in (8) are collinear.

The reflection problem is important, but there are several issues that mitigate

the problem in a typical spatial application. First, the model of interest in spatial

econometrics is typically not (7) but (6), i.e.
∑

j 6=i wijyj is not an estimate of E[yi|`i]

but the actual intended regressor. This distinction is important because ψ0 and β0 in

(6) are identified if

(9) E[y|X, `] = (I − ψ0W )−1Xβ a.s.⇔ (β, ψ) = (β0, ψ0).
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Absent further assumptions (e.g. about the dependence structure of u), whether or

not β0, ψ0 are identified depends on the sample size n.5 Nonidentification can occur

but is unlikely in most applications.

A more likely and interesting possibility is that of weak identification (Staiger and

Stock, 1997), a situation in which identification strength deteriorates with the sample

size to preclude consistent estimation. To see this, consider a contrived example that

has the off–diagonal elements of W equal to 1/(n − 1), i.e. W = (ιι′ − I)/n where ι

is a vector of ones. Then some minor mathematical manipulations yield

(10) E[yi|X, `] = x′iβ0 +
ψ0

1 + ψ0

x̄′−iβ0 a.s.,

where x̄−i is the sample mean of the xj ’s, excluding xi itself. If the slope coefficients

in β0 are nonzero and there is variation in xi across observations, both β0 and ψ0 are

identified in any sample of finite size. In the limit, however, the right hand side in

(10) becomes x′iβ0 + ψ0µ
′
xβ0/(1 + ψ0), such that neither the intercept coefficient nor

ψ0 is identified. With spatially lagged regressors, more serious examples arise.

This is the only context that we are aware of in which weak identification is not just

an artificial theoretical construct but can in fact occur in practice. Unfortunately, we

are not aware of any work on weak identification for spatial data.

2.3. Dependence Strength. A secondary problem is that of the strength of spatial

dependence. In a time series one can have e.g. a unit (or greater) root without much

consequence; the series simplify diverges. However, due to the ‘feedback’ with spatial

data (dependence is multidirectional), too much dependence can cause problems.

Indeed, it can lead to self–contradictory or unstable models. To illustrate, when yi is

a strategic choice in a game and the spatial model is interpreted as a vector of first–

order conditions or reaction functions, see section 2.4, there may be no equilibrium,

5For instance, if W is nonrandom then identification depends on the rank of (I − ψ0W ) which
varies with the sample size.
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an equilibrium may exist but not be unique, or the addition of additional observations

may cause the equilibrium to change radically.

In SAR(1) models the typical assumption is that the weight matrix W has eigen-

values not exceeding one (often imposed by row standardization) and requiring ψ0

to be less than one in absolute value. These conditions are sufficient but not always

necessary.

In the more general model (3), the situation is more complex. Among other things,

strength depends on the number of observations for which g(δij) is nonzero, the

dimension of the space, and whether the space grows (increasing domain asymptotics)

or only becomes more densely populated (infill asymptotics). With increasing domain

asymptotics, having an exponentially decreasing g–function with suitably bounded

maximum (as in Lychagin, Pinkse, Slade, and Van Reenen (2009)) usually suffices.

Alternatively, having no more than a fixed number of elements in any row ofG nonzero

and the g–elements (strictly) bounded by one over that number likewise suffices.

2.4. Interpretation. One of the problems with models like (3) is the question of

how we arrive at them. There are, however, natural ways in which such models can

arise. For example, if the economic context is a game among firms, and if their profits

are quadratic in their choice variables, (3) can be the set of first–order conditions or

reaction functions that arise out of the firms’ optimization problems. In particular,

under the above assumptions, a single player’s profits are maximized, conditional

on rival choices, by choosing yi as a linear function of y−i, exogenous observables,

and unobservables. Furthermore, although a quadratic specification for profits is not

general, it provides a second–order approximation to an arbitrary specification.

With the above example, decision makers are individual firms (or the managers

of those firms). However, in many applications, units of observation are aggregates

such as industries. Under what circumstances can we treat such aggregates as deci-

sion makers? If the industry is competitive and there are no constraints on choices

(e.g., no capacity constraints), a consistent aggregate exists and a collection of firms
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can be treated like a single decision maker (see e.g. Bliss, 1975). However, when

complications such as imperfect competition or quasi–fixed factors are introduced,

this is no longer the case. In particular, except under very special circumstances, an

aggregate profit function does not exist and estimates of the aggregate coefficients

imply nothing about the individual relationships.

In earlier work (Pinkse and Slade, 2004), we dealt with aggregation over consumers

in the context of the British beer market by assuming a functional form for demand

for which aggregation does not depend on the distribution of consumer heterogeneity

or of income.6 As we discuss there, however, the simplifying assumptions that must

be made for this approach to be valid are not always realistic. Moreover, although

similar assumptions can be used in other applications, this is not a ‘one size fits all’

type of problem; plausible assumptions are generally determined by the nature of the

application.

2.5. Estimation versus Testing. Many of the above caveats only apply to estima-

tion. For testing, especially for testing a null hypothesis of independence against an

alternative of spatial dependence, a complete and correct specification of the spatial

relationship is not generally necessary.

It is true that a correct specification yields a powerful consistent test, but even tests

against misspecified alternatives generally pick up some of the spatial dependence, al-

beit with a possibly significant loss of power. An alternative to such parametric tests

(e.g. Baltagi, Song, and Koh, 2003; Kelejian and Prucha, 2001; Pinkse, 1999; Robin-

son, 2008, 2009c) are fully nonparametric tests (e.g. Brett and Pinkse, 1997) which

are consistent but have less power than parametric tests for which the dependence

structure under the alternative is correctly specified.

6Note that, since consumers face budget constraints, there are no simple aggregation results for
consumers comparable to those for unconstrained competitive firms. The restrictions that must be
satisfied for consistent aggregation over consumers or constrained competitive firms can be found in
Gorman (1953).
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3. Endogeneity

3.1. General Comments. In all models with spatially lagged dependent variables,

including (3), endogeneity is implicit in the model. Such endogeneity issues can

be readily addressed by using GMM with one of the consistent covariance matrix

estimators mentioned in the introduction. Furthermore, with (2) a natural vector

of instruments for
∑

j 6=iwijyj is
∑

j 6=iwijxj . In the more general model (3), finding

good instruments is only marginally more complicated.

Like other models, spatial regression models can feature additional endogenous

regressors for the usual amalgam of reasons. Moreover, aside from the inclusion of

spatially lagged dependent variables and the aggregation issue mentioned in section

2.4, there are other potentially serious sources of endogeneity. Two such reasons are

discussed below.

3.2. Missing Data. If the true model is (3), but some data are missing, we have

a problem since we cannot construct the G(ψ)y–term for most values of ψ. Indeed,

in the SAR(1) model, we could only construct this term for the trivial case in which

ψ = 0.

There is not much work offering a serious solution to this problem. Lee (2007) has

shown that if data are missing for exogenous reasons in the SAR(1) model, then the

problem can be solved by using two stage least squares. What to do in more general

models and especially if data are missing for endogenous reasons (e.g. resulting from

an unwillingness to release unfavorable information) is largely an open question.

3.3. Choice of Location. The trickiest, most interesting, hardest to solve, most ig-

nored, and arguably most important cause of endogeneity in spatial regression models,

however, is that of the endogeneity arising from choices of location.

The most intuitive example is the case in which the unit of observation is a prod-

uct and space is product–characteristic space. Presumably a firm chooses product

characteristics to maximize profit. Hence location is endogenous and consequently
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so are all distances. This is problematic since it can be difficult to instrument for

distances; see Pinkse, Slade, and Brett (2002) for the only attempt that we know

of to do so. Alternatively, one can argue that product characteristics are difficult to

change compared with e.g. prices, making locations ‘relatively’ exogenous (see Pinkse

and Slade (2004)).

Although the product space example is the most intuitive, the endogeneity of loca-

tion problem arises equally in geographic space. Economists have studied the location

choices of individuals (e.g. Kennan and Walker (2009)) or of firms (e.g., Ellison and

Glaeser (1997)), but generally treat the characteristics of locales as given. The pur-

pose of much spatial work, however, is to uncover the interaction among (authorities

of) geographic units, who choose e.g. tax rates to attract firms or social services to

attract households (Brett and Pinkse, 2000). An ideal model would marry the two; it

would provide a model explaining both individuals’ location decisions and the actions

of, say, local authorities.

Many generic large sample results treat locations as both exogenous and fixed and

assume that they are observations at particular locations of an underlying spatial

process. This is natural in geology, but makes little sense in many economic appli-

cations. Allowing the characteristics to vary with the sample size (as in Jenish and

Prucha (2009)) is a start, but is insufficient. Indeed, such results do not accommo-

date endogeneity of locations including the possibility that products are taken off the

market or that their characteristics are changed in response to the introduction of

new products.

Our preference is to make explicit, possibly strong, assumptions about the economic

relationships that suit one’s application and then to match those assumptions to an

abstract generic limit result such as is done in Pinkse, Shen, and Slade (2007). This

can admittedly be challenging.
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4. New Directions

4.1. Discrete Choice. Nonlinearities in the spatial dependence structure are treach-

erous in general, but this is particularly true if the dependent variable yi is discrete,

say binary (as in McMillen (1992)). Even if all regressors are exogenous and spatial

dependence is only present in the error terms, the spatial dependence structure can

lead to heteroskedasticity, which causes standard probit estimates to be inconsistent

(see Pinkse and Slade (1998)).

If some of the regressors are endogenous but continuously distributed, it may be

possible to resolve the endogeneity problem along the lines of Rivers and Vuong

(1988). But if spatially lagged y belong in the linear spatial model (3), then pre-

sumably there are circumstances in which this would be equally true in a spatial

regression model with binary dependent variable such as the spatial probit model.

To illustrate, this problem arises when n firms simultaneously decide whether to

take a certain action (e.g. whether to enter a new market). The profit that each firm

derives from entering the market depends on how many and which of its competitors

decides to enter. Even in the two–player example there can be multiple equilibria

depending on covariate values (see e.g. Tamer (2003) and Xu (2009)).

There is now a large literature on the estimation of coefficients in discrete game–

theoretic models where the same small number of players play the same game in a large

number of different markets; see e.g. Bresnahan and Reiss (1991). We are unaware,

however, of any work on models with multiple equilibria in which the number of

markets is fixed but the number of players is allowed to grow.

4.2. Partial Identification. One of the main areas of current interest in economet-

rics is that of partial identification, in which the vector of parameters of interest is

not ‘point–identified,’ but in which we can only identify a set that it belongs to,

see Rosen (2008) for a game–theoretic example. Such models can be challenging to

estimate and the econometric theory justifying them can be complicated.
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Having theoretical results which allow partial identification methods to be used

in a spatial context would be helpful, because many relationships in game–theoretic

models can be expressed as inequalities rather than equalities of moments. Since

many spatial models can be thought of as games, such theoretical results would be

especially welcome.

5. Conclusion

As is evident from the preceeding text, we believe that the best way of generating

the most valuable new methodology in spatial econometrics is to start from concrete

empirical problems. We have highlighted several important and interesting areas of

spatial econometrics that have not yet been addressed, including the possibility of

weak identification, the treatment of spatial models as games with e.g. the possibility

of a multiplicity of equilibria, and the potential problem that the parameter of interest

is only set–identified.
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