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1. Introduction 10 

For most of its history, science has operated in a data-poor environment. Measurements 11 

of reality were difficult, expensive and cumbersome to obtain, store and manipulate.  12 

Consequently, much of the apparatus of science is designed to tease information from 13 

scarce observations.  This has changed dramatically in recent decades.   Science has 14 

moved from a data-poor to a data-rich environment.  The costs of capturing, storing and 15 

manipulating digital data have collapsed to a stunning degree, and communications and 16 

information technologies are widely deployed in professional and personal settings.   17 

 18 

In a recent paper in Science, Lazer et al. (2009) note that a computational social science is 19 

emerging that is based on the capacity to collect and analyze massive amounts of data on 20 

individual and group behavior.  However, it is emerging in the private sector such as 21 

Yahoo and Google and in government agencies such as the U.S. National Security 22 

Agency.  Little evidence of this approach appears in the major journals in the social and 23 

economic sciences.  The authors fear that computational social science will become the 24 

exclusive domain of private companies, government agencies and a privileged set of 25 

academics working with these entities on research that cannot be critiqued, published and 26 

replicated.  This will not facilitate the advancement of science or serve the broader public 27 

interest in the accumulation and dissemination of knowledge.   28 

 29 

In regional science, we have access to an unprecedented amount of fine-grained data on 30 

cities, transportation, economies and societies, much of these data referenced in geo-31 

space and time.  There is a tremendous opportunity to discover new insights and 32 

knowledge about spatial economies that can inform theory and modeling in regional 33 
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science, as well as policy and infrastructure decisions.  Yet, mirroring the larger trend 1 

identified by Lazer et al. (2009), there is little presence in the mainstream literature in 2 

regional science.  While some activity is emerging, the level of apparent activity is far 3 

short of the potential.  Computational approaches to discovering patterns in spatio-4 

temporal data mostly reside in the technical literatures in computer science, spatial 5 

analysis and geographic information science.  While this work is valuable, it does not 6 

reflect the specific needs of researchers in regional science.  It also does not reflect the 7 

rich body of theory and models in regional science; valuable sources of background 8 

knowledge that can help guide the exploration of massive spatio-temporal databases.    9 

 10 

This paper addresses the potential for discovering new knowledge in regional science 11 

through exploration of spatio-temporal databases.  There are well-established methods for 12 

knowledge discovery from databases, and a growing body of techniques tailored for 13 

spatio-temporal data.  A reason for the slow adoption in regional science may be due to a 14 

lack of awareness about these techniques.  But an equally formidable obstacle is 15 

misunderstanding of the role of data mining and knowledge discovery in regional 16 

science.  Rather than being atheoretical or anti-theoretic, the knowledge discovery 17 

process harmonizes well with traditional avenues to knowledge construction in science.  18 

In fact, the knowledge discovery process benefits from domain expertise and theory to 19 

focus searching through vast information spaces and distinguish between real and 20 

spurious patterns discovered in these spaces.              21 

 22 

The next section of this paper provides a brief history of knowledge discovery from 23 

databases, with special reference to the parent disciplines of regional science, namely, 24 

economics and geography.  Section 3 discusses the new sources of data that are relevant 25 

to regional science: fine-grained data on the individual people, objects and money 26 

flowing through a spatial economic system.  Section 4 reviews the general process of 27 

discovering new knowledge from databases, while Section 5 make the case for a 28 

specialized methods for geo-spatial data.  Section 6 discusses the relationships between 29 

knowledge discovery and regional science, with special emphasis on the role of theory.  30 

This section also raises several challenges to closer integration between knowledge 31 
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discovery and theory-building in regional science.  Section 7 concludes the paper by 1 

identifying some additional challenges.   2 

 3 

Throughout the remainder of this paper, I will use the term “knowledge discovery” to 4 

describe the general process of exploring massive digital databases for novel information.  5 

“Data mining” refers to the specific techniques applied in one stage of this process.  This 6 

is a critical distinction that will be more apparent later in the paper (Section 4).   7 

 8 

2. A Brief History of Knowledge Discovery from Databases 9 

To date, developments in knowledge discovery and data mining have mostly been driven 10 

by computer scientists and others in related fields.  The main contributors are the 11 

subfields of machine learning and database research.  The former involves the study of 12 

how machines and humans can learn from data.  Machine learning has its origins in 13 

artificial intelligence, so early work in the 1950s and 1960s attempted to simulate human 14 

learning in computers.  This focus subsequently became more pragmatic and continued 15 

research focused on developing algorithms and methods that could learn and perform 16 

well on specific tasks.  Database researchers, in contrast, became interested in knowledge 17 

discovery as data warehousing began to grow in the 1990s.  A data warehouse archives 18 

the records in the transactional databases of an organizational, often for liability purposes.  19 

As data accumulated, interest grew in exploring these repositories for information to 20 

support strategic and tactical decision making.  Consequently, many of the exploratory 21 

techniques developed from database research focus explicitly on the relational data model 22 

(Smyth 2000).         23 

 24 

A legacy of knowledge discovery’s origins in machine learning and database research is a 25 

focus on algorithms and rules and a relative lack of traditional statistical concepts such as 26 

parameter estimation and testing.  In addition, early applications of digital computers for 27 

data analysis in the 1960s lead to the conclusion that one can always search long enough 28 

and find a complex but often spurious model that will fit a dataset arbitrarily well.  29 

Consequently, “data mining” still has a negative connotation in many fields such as 30 

econometrics (Smyth 2000).   31 
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 1 

One of the more visible debates about data mining in the economics literature concerns 2 

issues surrounding specification-search in statistical model-building.  An early study by 3 

Lovell (1983) analyzes specification-search methods with a simulated dataset and 4 

suggests rules for deflating exaggerated claims of significance.   Hoover and Perez (1999) 5 

extended this simulation design to evaluate general-to-specific modeling where one starts 6 

with a complex model and reduces to a more elegant one.  The theory is, given enough 7 

data, only the true specification will survive a sufficiently stringent battery of statistical 8 

tests designed to pare variables from the model.  This “data mining” approach contrasts 9 

with the traditional specific-to-general strategy where one starts with a spare model based 10 

on theory and conservatively builds a more complex model.  Hoover and Perez (1999) 11 

report generally favorable results about the ability of the general-to-specific approach to 12 

uncover the true model underlying the data.   Campos and Ericsson (1999) and Hendry 13 

and Krolzig (1999) also support this positive conclusion.  However, Hand (1999) 14 

dismisses this as irrelevant, claiming that given the size of the information space 15 

involved, one would be extraordinarily lucky to configure an initial model that contains 16 

the true one.  Since one can only hope to discover an approximation of the true model, 17 

the only relevant criterion is predictive performance not explanatory validity.  This is a 18 

controversial position, particularly in a theory-driven science such as economics 19 

(Feelders 2002). 20 

 21 

Knowledge discovery methods in geography are less controversial than in economics due 22 

to the rise of Geographic Information Systems (GIS) as a vehicle for spatial data 23 

management and analysis.  However, there is a growing concern about potential privacy 24 

violations that may occurs from exploring geospatial data, especially when integrating 25 

heterogeneous spatial databases.  The concept of locational privacy results from these 26 

concerns, and protocols are emerging to diminish or eliminate these risks without 27 

destroying the utility of these data in basic and applied research (see Dobson and Fisher 28 

2003; Duckham, Kulik and Birtley 2006).         29 

 30 
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As I will suggest below, controversy surrounding the scientific value of knowledge 1 

discovery methods results from a misunderstanding of the relationship knowledge 2 

discovery and statistics, as well as the relationship between knowledge discovery and 3 

theory.  Knowledge discovery complements rather than replaces traditional statistics by 4 

providing an enhanced process for hypothesis generation; these hypotheses can (and 5 

should!) be evaluated against theory as well as through the techniques of confirmatory 6 

hypothesis testing.  Rather than being antagonistic towards theory, knowledge discovery 7 

benefits from a strong theoretical base: this can help guide the search process as well as 8 

help evaluate the patterns that emerge from this process.       9 

 10 

3. New Data Sources 11 

The key opportunity for economic geographers and regional scientists at this juncture is 12 

not just the increasing power of computers, the improving sophistication of knowledge 13 

discovery methods, or even the avalanche of available data.  Rather, it is the increasing 14 

availability of fine-grained data on the location of individual people and objects densely 15 

with respect to time, as well as data about online searches, transactions, social 16 

connections and commentaries.  These data can allow an unprecedented view of societies 17 

and economies from the “bottom-up”, as well as the aggregate structures, processes and 18 

dynamics that emerge from the interactions of individuals in markets, institutions, and 19 

regions.  Although massive databases have been available for decades, the fine-grained 20 

nature of these data is relatively new, and techniques are emerging for exploring these 21 

data.  This section discusses some of these new data sources.      22 

 23 

3.1. Data collection technologies 24 

Point-of-sale data.  A motivation behind the wider diffusion of knowledge discovery 25 

techniques beyond the database and machine learning communities is the availability of 26 

point of sale (POS) data through product barcoding.  POS data facilitates market basket 27 

analysis: the analysis and prediction of customer buying habits by finding associations 28 

among items that customers place in their shopping basket (Han and Kamber 2006).  29 

Indeed, one of the earliest data mining techniques used outside the database and machine 30 

learning communities was association rule mining (Smyth 2000).  These data remain 31 
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important for knowledge discovery in economics, marketing and related fields, 1 

particularly when combined with data associated with customer loyalty programs.  2 

However, new sources of data, especially data on individual behavior in space and time, 3 

is making knowledge discovery more relevant for geography and regional science.        4 

 5 

Location-aware technologies.  Location-aware technologies (LATs) are devices that can 6 

report their geographic location densely with respect to time. Major strategies for 7 

locational referencing include radiolocation methods based on the time, time difference, 8 

or angle of the signals’ arrivals at base stations from mobile clients, the global 9 

positioning system (GPS) that exploits time differences of signals arriving from satellites 10 

in Earth orbit and interpolation methods that use distances and directions from a known 11 

location along a route to determine the current location (Grejner-Brzezinska 2004).  12 

LATs enable location-based services (LBS). LBS provide information to individuals 13 

based on their geographic location though client devices such as mobile phones (Benson 14 

2001). Typical LBS include concierge services, navigation, social networking,   15 

emergency response, fleet management, local news and tourist information (Spiekermann 16 

2004).  Worldwide deployment levels may reach 1 billion devices by 2010 (Bennahum 17 

2001; Smyth 2001).  LBS could be a very rich source of data on human activities in space 18 

and time if issues regarding privacy and propriety can be resolved (Miller 2007). 19 

 20 

An increasingly important LAT is radiofrequency identification (RFID) tags. RFID tags 21 

attached to objects can transmit data to fixed readers using passive or active methods. 22 

Passive tags are cheaper, smaller, and lighter, but have a very limited range.  Also, 23 

readers cannot track multiple passive tags simultaneously. Active tags are heavier and 24 

more expensive since they contain a power source, but have a longer range and readers 25 

than can track multiple tags simultaneously.  In both systems, the RFID tags must self-26 

identify because the reader conducts the location calculations.  This means that RFID 27 

systems have greater potential for surveillance and privacy violations than systems such 28 

as the GPS where the client conducts the location referencing (Morville 2005).  RFID 29 

tags are becoming a central feature in the retailing industry due to their capabilities for 30 

real-time supply chain management (Roberti 2003). Other RFID applications include 31 
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automated toll collection, passports, airline baggage tracking, and VIP services at hotels, 1 

clubs and resorts. These applications can allow individual tracking through the products 2 

and services that individuals use, but have significant potential for privacy violations 3 

(Eckfeldt 2005; McGinty 2004; Shih et al. 2005). 4 

 5 

 6 

Geosensor networks.  Another technology that can capture data on activities in space 7 

and time are geosensor networks. These are interconnected, communicating, and 8 

georeferenced computing devices that monitor a geographic environment. The 9 

geographic scales monitored can range from a single room to an entire city or ecosystem. 10 

The devices are typically heterogeneous, ranging from temperature and humidity sensors 11 

to video cameras and other imagery capture devices.  Geosensor networks can also 12 

capture the evolution of the phenomenon or environment over time. Geosensor networks 13 

can provide fixed stations for tracking individual objects, identify traffic patterns and 14 

determine possible stops for a vehicle, as it travels across a given domain in the absence 15 

of mobile technologies such as GPS or RFID (Stefanidis 2006; Stefanidis and Nittel 16 

2004). 17 

 18 

The Internet.   LATs and geosesnor networks only capture human activities in real 19 

space.  An increasing number of activities and interactions are occurring in cyberspace: 20 

the domain implied by the world’s collective information and communication 21 

technologies.  Phone calls, emails, texts and other forms of interpersonal communication 22 

leave records that can be used to understand social networks, group interactions and 23 

social dynamics.  The World Wide Web provides a vast repository of what people are 24 

saying, buying, searching and connecting with each other.  Advances in natural language 25 

processing as well as methods for analyzing media data are improving the ability to 26 

evaluate social and economic behavior as mediated by these technologies (Lazer et al. 27 

2009).  28 

 29 

Brockmann, Hufnagel and Geisel (2006) provide a clever illustration of using web-based 30 

data in knowledge discovery about human behavior.  The website “Where’s George?” 31 
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(www.wheresgeorge.com) allows users to input the serial number of a U.S. or Canadian 1 

bill and the current location of the user.  If the bill has been registered previously, a list of 2 

all the locations and times where the bill has been appears; if the bill has not been 3 

registered, a new list is created.  This is clearly an incomplete, and likely biased, dataset. 4 

Nevertheless, Brockmann, Hufnagel and Geisel (2006) analyzed the trajectories of 5 

approximately 460,000 bills using this website and were able to conclude that human 6 

travel as evidenced by the money flow patterns is consistent with a continuous-time 7 

random walk process.  Although not a knowledge discovery exercise, this research 8 

illustrates that the utility of the noisy, non-scientifically sampled surrogate data that is 9 

readily available on the web.       10 

 11 

 12 

3.2. Simulation    13 

The increasing availability of fine-grained empirical data is only part of the story.  14 

Another part is the increasing ability to generate vast amounts of synthetic data by 15 

simulating large and complex systems at the individual level.  The avalanche of CPU 16 

cycles bequeathed by improvements in computing engineering (and as described by the 17 

now famous Moore’s Law) is only one motivation.  Equally important is a growing 18 

recognition that complex systems such as cities and societies cannot be understood 19 

through reductionist approaches.  Rather, complex patterns and dynamics emerge from 20 

the interactions of individual components of the systems: the whole is more than the sum 21 

of the parts (Flake 1998).       22 

 23 

Two major traditions for disaggregate modeling in regional science are microsimulation 24 

and agent-based modeling.  Microsimulation is the older tradition: this refers to the 25 

modeling and analysis of phenomena at a disaggregate level to order to better understand 26 

its aggregate behavior. Microsimulation has a substantial history in social science, dating 27 

back to attempts to modeling the US economy in the 1950s (Clarke and Holm 1987).  28 

There are well-established standards and techniques for model estimation and validation 29 

(Boman and Holm 2004).   30 

 31 



DRAFT 

File: Data Avalanche in Regional Science v7 

Last save: 4/8/2009 2:22:00 PM 

9 

Agent-based modeling (ABM) simulates the dynamics of complex systems through the 1 

behaviors and interactions of its individual units or agents. An agent is an independent, 2 

goal-driven that are typically autonomous (it makes decisions based on its inputs and 3 

goals without an external controlling mechanism) and adaptive (its behavior can improve 4 

over time through a learning process). Agents interact by exchanging physical or virtual 5 

(informational) resources (Maes 1995). Agents can represent people, households, 6 

animals, firms, organizations, regions, countries, and so on, depending on the scale of the 7 

analysis and the elemental units hypothesized for that scale. The increasing availability of 8 

high-resolution data and GIS tools for handling these data facilitate ABM in simulating 9 

human spatial systems such as cities and economies (Benenson and Torrens 2004). 10 

Applications of ABM include economics (Epstein 1999; Tesfatsion 2009), land-use/land-11 

cover change (Parker et al. 2003), social dynamics (Epstein and Axell 1996), 12 

transportation (Balmer et al. 2004), and human movement at micoscales (Batty et al. 13 

2003).  ABM offers a rigorous but rich approach to simulating human phenomena from 14 

the bottom-up, as well as the concepts of adaptation, self-organization, and emergence to 15 

capture linkages between individual behavior and aggregate dynamics (Boman and Holm 16 

2004). 17 

 18 

Both microsimulation and ABM have potential for facilitating deeper understanding of 19 

complex physical and human systems.  Both techniques generate voluminous and 20 

intricate results; essentially, massive spatio-temporal databases.   Making sense of the 21 

results of a large-scale simulation is the same challenge as understanding similarly 22 

detailed and massive empirical data about the system in the real-world.  This is 23 

particularly challenging when conducting multiple simulation runs within an 24 

experimental design, as is good practice.       25 

 26 

 27 

4. What is Knowledge Discovery from Databases? 28 

Knowledge discovery from databases (KDD) is based on a belief that information in the 29 

form of interesting patterns is hidden in massive databases.  “Interesting” means that the 30 

information is easily understood by humans, valid for generalization, potentially useful 31 
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and novel (Han and Kamber 2001).  KDD is also predicated on the belief that traditional 1 

analysis methods are not capable of discovering the hidden and interesting information in 2 

massive, heterogeneous and nonscientific databases.     3 

 4 

KDD accommodates data not normally amenable to statistical analysis. Statistical 5 

techniques typically requires a clean (relatively noise free) numeric database 6 

scientifically sampled from a large population with specific questions in mind.  Many 7 

statistical models require strict assumptions (such as independence, stationarity of 8 

underlying processes, and normality).  In contrast, the empirical and synthetic data being 9 

generated and stored in many databases are noisy, non-numeric and possibly incomplete.  10 

These data are also collected in an open-ended manner without specific questions in mind 11 

or were generated as a byproduct of another activity (Hand 1998).  KDD in its 12 

contemporary form encompasses techniques from statistics, machine learning, pattern 13 

recognition, numeric search and scientific visualization to accommodate the new data 14 

types and data volumes being generated through information technologies. 15 

 16 

4.1. The Knowledge Discovery Process  17 

The KDD process usually consists of several stages, corresponding to major tasks 18 

involved in preparing and exploring the data as well as interpreting results (Adriaans and 19 

Zantinge 1996; Brachman and Anand 1996; Fayyad, Piatetsky-Shapiro and Smyth 1996; 20 

Han and Kamber 2006; Matheus, Chan and Piatetsky-Shapiro 1993).  Although the order 21 

of the stages below represent a standard progression though the KDD process, in practice 22 

they may not be executed in any particular order.   Some steps may be skipped and others 23 

repeated, depending on the judgment of the analyst guiding the process and the 24 

intermediate results.  This is a key point.  KDD is not an automated, push-button process: 25 

it demands intelligence decision-making, domain expertise and thoughtful reflection.  26 

These are skills that human minds still do much better than computers.     27 

 28 

• Data selection involves determining a subset of the records or variables in a 29 

database for knowledge discovery.  30 
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• Data pre-processing involves “cleaning” the selected data to remove noise, 1 

eliminating duplicate records, and handling missing data fields and domain 2 

violations. The pre-processing step may also include data enrichment through 3 

combining the selected data with other, external data (e.g., census data, market 4 

data).   5 

• Data reduction and projection diminishes the dimensionality of the data through 6 

transformations to equivalent but more efficient representations of the information 7 

space.  8 

• Data mining involves the application of low-level algorithms to uncover hidden 9 

patterns in the data.   10 

• Interpreting and reporting stage involves evaluating, understanding and 11 

communicating the information extracted from the data.  12 

 13 

4.2. Data Mining Techniques   14 

Data mining involves the application of low-level functions or algorithms for revealing 15 

hidden information in a database (Klösgen and Żytkow 1996).  There are several major 16 

classes of data mining functions: the type of information being sought determines the 17 

particular type of data mining function to be applied (Han and Kamber 2006).  Table 1 18 

summarizes major data mining tasks.  All of these techniques share a common 19 

characteristic: scalability, or the ability to handle massive databases without unreasonable 20 

increases in computational time.     21 
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 1 

Data mining 

task 

Description Techniques 

Segmentation or 

clustering 

Determine a finite set of 

implicit groups that describes 

the data.   

• Cluster analysis 

 

Classification Predict the class label that a set 

of data belongs to based on 

some training datasets 

• Bayesian classification 

• Decision tree induction 

• Artificial neural networks 

• Support vector machine 

Association Find relationships among data 

objects; predict the value of 

some attribute based on the 

value of other attributes  

• Association rules 

• Bayesian networks 

Deviations  Find data items that exhibit 

unusual deviations from 

expectations   

• Cluster analysis 

• Outlier detection 

• Evolution analysis 

Trends Lines and curves summarizing 

the database, often over time 
• Regression 

• Sequential pattern extraction 

Generalizations Compact descriptions of the 

data 
• Summary rules 

• Attribute-oriented induction 

Table 1: Data mining tasks and techniques (Miller and Han 2009) 

 2 

Segmentation or clustering involves partitioning a selected set of data into meaningful 3 

groupings or classes.  The commonly used data mining technique of cluster analysis 4 

determines a set of classes and assignments to these classes based on the relative 5 

proximity of data items in the information space.  Cluster analysis methods for data 6 

mining must accommodate the large data volumes and high dimensionalities of interest in 7 

data mining; this usually requires statistical approximation or heuristics.   Classification 8 

refers to finding rules or methods to assign data items into pre-existing classes.  There are 9 

many classification methods developed in many years of research in statistics, pattern 10 

recognition, machine learning and data mining, including decision tree induction, naïve 11 

Bayesian classification, neural networks and support vector machines.  Associations are 12 

rules that predict the relationships between data objects or the value of some attribute 13 

based on the value of other attributes.  Deviations are data items that exhibit unexpected 14 

deviations or differences from some norm.  These cases are either errors that should be 15 

corrected/ignored or represent unusual cases that are worthy of additional investigation.  16 
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Trends are lines and curves fitted to the data; techniques include linear and logistic 1 

regression analysis that are very fast and easy to estimate.  These methods are often 2 

combined with filtering techniques such as stepwise regression.  Generalization and 3 

characterization are compact descriptions of the database.  Techniques include summary 4 

rules that generate a relatively small set of logical statements that condense the 5 

information in the database.   6 

 7 

4.3. Scientific Visualization and Knowledge Discovery   8 

Visualization is a powerful strategy for integrating high-level human intelligence and 9 

knowledge into the KDD process.  The human visual system is extremely effective at 10 

recognizing patterns, trends and anomalies.  The visual acuity and pattern spotting 11 

capabilities of humans can be exploited in many stages of the KDD process, including 12 

OLAP, query formulation, technique selection and interpretation of results.  These 13 

capabilities have yet to be surpassed by machine-based approaches (Fayyad, Grinstein 14 

and Wierse 2001).     15 

 16 

 17 

5. Knowledge Discovery in Regional Science  18 

5.1. Geospatial Knowledge Discovery 19 

Geospatial knowledge discovery (GKD) is the process of extracting knowledge massive 20 

georeferenced databases.  GKD has emerged as a subdomain of KDD due to the unique 21 

requirements of geospatial data, information and knowledge.  There are several reasons 22 

why GKD is unique.   23 

 24 

Geospatial information is not only highly dimensioned, but also have the property that up 25 

to four dimensions (representing space and time) form a framework for the remaining 26 

dimensions.  Fidelity with the real-world requires embedding georeferenced observations 27 

within a formal space that reflects empirical geographic and temporal relationships as 28 

faithfully as possible (or appropriate).  Euclidean space is the most common framework, 29 

and often adopted implicitly by default, but it is only one of an infinite number of 30 

possibility.  Techniques exist for estimating the geo-space implied by a matrix of 31 
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distance, cost or flows between geographic locations and analyzing differences among 1 

these spaces (see Ahmed and Miller 2007; Tobler 1994).  Whatever space is adopted, it 2 

carries with it a rich spectrum of implied relations among the embedded spatial objects, 3 

including proximity, connectivity and direction (Miller and Wentz 2003).   The 4 

information implicit in the geographic measurement framework is ignored in many 5 

knowledge discovery tools (Gahegan 2000a).  6 

 7 

Geographic data usually exhibit the properties of spatial dependency and spatial 8 

heterogeneity.  Spatial dependency is the tendency of attributes to be more related with 9 

proximity in geographic space due to the impeding effects of distance (Tobler 1970).  10 

Spatial heterogeneity refers to the non-stationarity of most geographic processes.  The 11 

“friction” of distance combined with the relative uniqueness of each location means that 12 

geographic processes are local.  Spatial dependency and spatial heterogeneity have 13 

historically been regarded as nuisances confounding standard statistical techniques that 14 

typically require independence and stationarity assumptions.  However, these can also be 15 

valuable sources of information about the geographic phenomena under investigation.   16 

 17 

Spatial objects tend to be more complex than the non-spatial objects, particularly with 18 

respect to their geometric footprint.  Spatial objects often cannot be reduced to points in 19 

some information without doing great harm to the representation of the real-world 20 

phenomenon.  Size, shape and boundary properties of geographic entities often affect 21 

geospatial processes, sometimes due to measurement artifacts (e.g., recording flow only 22 

when it crosses some fiat boundary), but often due to physical and human properties in 23 

the real world (e.g., a mountain range forming a natural boundary between two nations, 24 

or a divided highway creating an equally pervasive boundary between two urban 25 

neighborhoods).    Relationships such as distance, direction and connectivity are more 26 

complex with dimensional objects (see Egenhofer and Herring 1994; Okabe and Miller 27 

1996; Peuquet and Ci-Xiang 1987).  The number and complexity of implied spatial 28 

relationships increase dramatically with dimensional spatial objects such as lines, 29 

polygons, surfaces and solids. 30 

 31 
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In addition to changes in their non-spatial attributes, spatial objects can also undergo 1 

change over time with respect to their geometry and spatial identity.  We often refer to 2 

the former type of change as motion: this can include changes in morphology, location, or 3 

both.  Motion is deceptively complex concept: it can also occur in the whole object or its 4 

composite parts, it can be continuous or discrete with respect to space and time and can 5 

be conceptualized at the individual or collective scales (Galton 1995, 1997).  Spatial 6 

identity changes include events such as being created, destroyed, aggregated, 7 

disaggregated, fusion with other spatial objects and fission into new spatial objects.  New 8 

spatial objects may also be spawned or cloned from existing objects (Frank 2001; 9 

Hornsby and Egenhofer 2000; Medak 2001).   10 

 11 

5.2. Geospatial Data Mining Techniques   12 

Many of the traditional data mining tasks discussed above have analogous tasks in the 13 

geographic data mining (Ester, Kriegel and Sander 1997; Han and Kamber 2006).   14 

Spatial classification builds up classification models based on a relevant set of attributes 15 

and attribute values that determine an effective mapping of spatial objects into predefined 16 

target classes.  Spatial clustering groups spatial objects such that objects in the same 17 

group are similar and objects in different groups are unlike each other.  Clustering can be 18 

based on combinations of non-spatial attributes, spatial attributes (e.g., shape) and 19 

proximity of the objects or events in space, time and space-time.  Spatial trend detection 20 

involves finding patterns of change with respect to the neighborhood of some spatial 21 

object.  Spatial characterization and generalization is therefore an important geographic 22 

data mining task.  Generalization-based data mining can follow one of two strategies in 23 

the geographic case.  Spatial dominant generalization first spatially aggregates the data 24 

and then applies standard attribute-oriented induction method at each geographic 25 

aggregation level.  Non-spatial dominant generalization generates aggregated spatial 26 

units that share the same high-level semantic description.  Spatial association rules are 27 

association rules that include spatial predicates in the precedent or antecedent.   28 

 29 

5.3. Geovisualization   30 
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Geographic visualization (GVis) is the integration of cartography, GIS, and scientific 1 

visualization to explore geographic data and communicate geographic information to 2 

private or public audiences (see MacEachren and Kraak 1997).  GVis and GKD are 3 

highly complementary, perhaps even more than KDD and scientific visualization due to 4 

importance of geometry and position in spatial data.   Integration between GVis and 5 

GKD can occur at several levels, including determining high-level goals for the GKD 6 

process, specification of appropriate geographic data mining tasks for achieving the high-7 

level goals and choices include specific tools and algorithms to achieve the data mining 8 

task specified (MacEachren et al. 1999).   9 

 10 

6. Regional Science and Knowledge Discovery: The Role of Theory 11 

KDD is sometimes dismissed by those outside its community as a black-box technique, 12 

or as a “fishing expedition.”  It should be clear by this point in the paper that this is not 13 

the case: KDD is complex and require thoughtful guidance by an interested and 14 

knowledgeable expert.  Nevertheless, too often the “expert” is a computer scientist who 15 

enjoys building and testing tools for the sake of the tools themselves.  KDD in general 16 

has not spread widely into the domain sciences beyond the fields of marketing and some 17 

of the physical sciences such as chemistry and medicine.  GKD is also not well known or 18 

widely used outside of the GIS community: it is almost invisible in economic geography 19 

and regional science.  This is unfortunate since regional scientists are missing 20 

opportunities to advance their science by exploiting newly available data on economic 21 

systems and increasingly sophisticated tools for exploring these data.  They are also 22 

missing an opportunity to influence the development of these tools for the greater benefit 23 

of regional scientists. 24 

 25 

GKD has a supporting role in modeling and theory-building: it does not attempt to 26 

replace or diminish these processes.  Also, there is a crucial role for theory in supporting 27 

the GKD process.             28 

 29 

6.1. Knowledge Discovery to Support Theory 30 
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KDD is essentially a hypothesis generation process; much more so than traditional 1 

inferential statistics.  Although statistical analysis is appropriately viewed as an inductive 2 

process, it is often embedded within a broader deductive process.  Statistical models are 3 

confirmatory, requiring the analyst to specify a model based on some theory, test the 4 

hypotheses generated by that model, and revise the theory depending on the results.  In 5 

contrast, the deeply hidden patterns sought through KDD are difficult or impossible to 6 

specify a priori, at least with any reasonable degree of completeness.  The number of 7 

potential hypothesis implied by a massive database is often too large to test exhaustively, 8 

even if many can be dismissed a priori as trivial or absurd.  KDD is more concerned 9 

about prompting investigators to formulate new predictions and hypotheses from data: 10 

KDD seek novel information which (by definition) is surprising and would not have 11 

otherwise come to mind (Elder and Pregibon 1996; Hand 1998).  In this sense, KDD is 12 

similar to a telescope or microscope: it is a way for researchers to look at the data in 13 

different ways, discover something new, and formulate theories, models or hypothesis 14 

based on this novel information within the context of existing theory and knowledge.     15 

 16 

In addition to supporting the hypothesis formulation stage of scientific knowledge 17 

construction, Roddick and Lees (2009) argue that the knowledge discovery process can 18 

work directly in concert with traditional knowledge construction in science.  Echoing the 19 

concerns expressed by Hand (1999), they note that exponentially large information space 20 

implied by a massive database may lead to an induction fallacy where hypothesis 21 

developed from the data are consistent but do not reflect the true model.  Roddick and 22 

Less (2009) suggest a strategy that not only focuses the search for patterns through data 23 

selection and reduction, but also can support conceptual model building.  The investigator 24 

supplies a conceptual model as a starting point for generating experimental hypotheses 25 

and a set of associated null hypotheses.  Data mining techniques focus on the subregions 26 

of the information space indicated by these hypotheses.  In accordance with the usual 27 

notion of scientific induction, confidence in the conceptual model increases if discovered 28 

patterns support its hypotheses.  Unsupported hypotheses suggest a modification to the 29 

conceptual model or the investigator’s reasoning about the phenomenon.  This process 30 

can also accept competing conceptual models and provide a ranking based on support for 31 
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the data.  However, this is a modeling building and data focusing strategy, not a modeling 1 

testing procedure: final acceptance of rejection of a model should be based on standard 2 

confirmatory procedures and tests.   3 

 4 

6.2. Theory to Support Knowledge Discovery 5 

Despite data reduction techniques and the computational efficiency of data mining tools, 6 

the information space implied by a massive, heterogeneous database may be so large or 7 

so complex that it cannot be exhaustively explored.  A good data mining system should 8 

be able to generate all of the interesting patterns in a database, but only the interesting 9 

ones.  Unfortunately, while some dimensions of interestingness can be such as validity 10 

can be assessed automatically, the qualities of comprehensible, useful and novel are more 11 

difficult to assess using automated methods.  Consequently, it is typical for a data mining 12 

system to generate an unacceptably large number of patterns, most of which could be 13 

dismissed as difficult to interpret, useless or trivial.  This is particularly true in GKD: the 14 

number of spatial predicates and transformations over time is so large that the number of 15 

candidate patterns to evaluate can be overwhelming (Roddick and Lees 2009). 16 

 17 

Background knowledge is strategy to maximize the completeness of a data mining 18 

system.  It is a computational representation of domain knowledge to focus data mining 19 

techniques on subregions of the information space that are likely to contain interesting 20 

patterns.  Background knowledge reflects known facts about the domain being 21 

investigated in a way that can be exploited by data mining algorithms.  For example, a 22 

common type of background knowledge is a concept hierarchy: this is a sequence of 23 

mappings from low-level to high-level semantics.  It is typically organized as a tree 24 

whose leaves correspond to measured attributes in the database and parents represent 25 

higher level semantics that synoptically summarize the lower-level semantics of its 26 

children.  Concept hierarchies provide a logical map for aggregating or drilling-down 27 

attributes automatically during the data mining process (Han and Kamber 2006).  28 

Background knowledge can be derived from assumptions about the system, observable 29 

facts, expert knowledge, or theory.      30 

 31 
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Interestingness measures quantitatively separate interesting patterns from uninteresting 1 

ones by assessing the simplicity, certainty, utility and novelty of the generated patterns 2 

(Silberschatz and Tuzhilin 1996; Tan, Kumar, and Srivastava 2002).  These can be used 3 

to guide data mining algorithms using feedback, or evaluate the discovered patterns after 4 

discovery.  There are different types of interestingness measures defined across the 5 

dimensions mentioned above, and some are specific to the type of data mining technique.  6 

For example, the resulting rule length when expressing the pattern in conjunctive normal 7 

form is a measure of simplicity (and therefore legibility).  A simple confidence measure 8 

for association rules is the number of times two facts appear together relative to the 9 

appearance of one fact alone.   Support refers to the number of times in the database for 10 

which a pattern is true; this measures the general utility of the pattern (Han and Kamber 11 

2006). 12 

 13 

Computer scientists have become very clever at developing ways to focus the knowledge 14 

discovery process.  However, they are starving for content: the domain-specific facts that 15 

can guide discovery.  Regional science, on the other hand, have a very rich body of 16 

theory and models that can be used as background knowledge to guide the discovery 17 

process and as interestingness measure to filter spurious patterns from potentially 18 

interesting ones.  However, there are three challenges to translating domain knowledge 19 

from regional science to the discovery process 20 

 21 

First, similar to many human sciences, regional science concepts can be abstract, vague, 22 

fluid and multi-level.  For example, the core concept of a “region” can very depending on 23 

the context.  Similarly, definitions of entities such as “household,” “firm” and “city” are 24 

not always clear or consistent across different research inestigations.  This is 25 

understandable given the complex nature of the phenomena of interest in regional 26 

science, but it does point to a need for more consistent definitions, even if these are 27 

flexible.  In brief, regional science needs a clear ontology that provides formal definitions 28 

of its basic core concepts and the relationships among these concepts.  Jackson (1994) 29 

advocates the use of object-oriented modeling languages in regional science, arguing that 30 

this can improve not only the modeling process itself through facilitating incremental 31 
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model building, but also the communication and collaboration among regional scientists.  1 

The latter point is the one that is particularly relevant for the discussion here: the 2 

development of standards and definitions through object-oriented modeling languages 3 

can allow the creation and maintenance of common and extensible libraries of core 4 

regional science concepts that can be shared across researchers and applications.      5 

    6 

A second challenge concerns differences in knowledge representation between regional 7 

science versus computer science.  In regional science, most knowledge is implicit: it is 8 

embedded in formal theories, models and equations.  However, knowledge discovery 9 

techniques require explicit representations in the form of rules, hierarchies and concept 10 

networks.  Translating knowledge embedded in regional science theories and models to a 11 

form that can be exploited by automated data mining techniques is not trivial: these 12 

explicit representations must not only be effective (can capture all of the implicit 13 

knowledge, but not more) but efficient (can be applied without undue computational 14 

burden).      15 

 16 

A third challenge is a need for effective methods for spatial pattern evaluation when 17 

comparing reality to theory.  If an observed spatial pattern matches a theoretical 18 

prediction, this is interesting but not novel (unexpected).  At the other extreme, if an 19 

observed spatial pattern matches a spatial null (the trivial pattern that would be expected 20 

by chance) is neither interesting nor novel.  The spatial patterns that fall between theory 21 

and null (in other words, those that are not trivial and at variance with theory), may be 22 

both interesting and novel, and therefore worthy of further investigation.  However, there 23 

is no clear metric for comparing observed spatial patterns to null and theoretical spatial 24 

patterns.  One difficulty is the lack of a good spatial null.  Michael Goodchild has argued 25 

persuasively that complete spatial randomness (CSR) is a “straw target:” the likelihood of 26 

any spatial pattern following CSR is so remote that this null model is likely to be rejected 27 

in all cases.  But, what is the alternative?  It is unclear that there is a general spatial null 28 

model across all domains and applications, and the appropriate spatial null will depend on 29 

the behavioral and other processes assumed or postulated in the specific theory or model.  30 

Also, it is unclear how to measure deviations from null or expected spatial patterns.  31 
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Differences between observed and null or expected patterns can be expressed 1 

geometrically, but it is not clear how a geometric difference can be translated into one-2 

dimensional, unambiguous quantitative measure of departure from a norm.              3 

 4 

 5 

7. Other Challenges 6 

In additional to the challenges mention above, there are challenges facing the wider use 7 

of knowledge discovery techniques in regional science. 8 

 9 

Semantically poor data.  LATs and ICTs can generate a vast amount of fine-grained 10 

data on peoples’ activities in geo-space and cyberspace.  However, much of these data are 11 

semantically poor.  For example, while it is easy to use vehicle-based GPS receivers or 12 

location-enabled mobile phones to capture individual trajectories in space, it is more 13 

difficult to get the attributes associated with these trajectories such as the characteristics 14 

of the person, the activities conducted, or the planned activities that could not be 15 

conducted.  Some of the information can be recovered by integrating heterogeneous data 16 

(for example, map-matching trajectories to detailed land-use data).  However, this can be 17 

cumbersome, raise privacy concerns, and introduce error.  Although existing efforts to 18 

exploit surrogate and auxiliary data to recover or infer data semantics should continue, 19 

working with voluminous but semantically poor data may require asking some research 20 

questions differently, or asking the same questions in a different way.  21 

 22 

Algorithms and infrastructures.  Spatial models and techniques can be computationally 23 

complex.  In theory, a spatial model requires evaluation of pairwise distances among all 24 

locations in space.  This implies quadratic computational times in the worse-case: this is 25 

unacceptably slow for knowledge discovery and data mining.  The worse-case can be 26 

avoided in most cases since we know that most spatial processes attenuate with distance 27 

(indeed, this is why Waldo Tobler originally coined the often-cited “Tobler’s First of 28 

Law of Geography” in Tobler (1970): it was a justification for skipping calculations 29 

between entities that are spatially remote).  However, in general this is a heuristic, and the 30 

implications of these shortcuts for the knowledge discovery process must be understood.   31 
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 1 

There is also a need for more effective use of parallel and high-performance computing 2 

environments in spatial knowledge discovery.  The use of parallel, grid and cloud-3 

computing environments is seriously under-researched in regional science, geography 4 

and even Geographic Information Science despite the fact that many spatial models are 5 

easily adapted to these environments due to the inherent parallelism of spatio-temporal 6 

data, as well as parallelism in the computational tasks required (see Armstrong, Wang 7 

and Cowles 2005).     8 

 9 

Education.  Finally, educating the next generation of economists, regional scientists, and 10 

quantitative geographers is a major challenge.  It is already difficult to provide students 11 

with the necessary background in economic and geographic theory to conduct cutting-12 

edge research in regional science: adding computer science to this mix will be 13 

challenging, especially since the language and ways of thinking in these disparate fields 14 

are in many ways orthogonal to each other.  Also, given the dynamic nature of digital 15 

technologies, it will be necessary to continue education throughout one’s career in order 16 

to keep abreast of developments in the field.  I am not saying that regional scientists 17 

should become computer scientists: in fact, I think this would be a very bad thing.  But, 18 

regional scientists need the appropriate expertise to choose, implement and interpret 19 

knowledge discovery and data mining techniques effectively.          20 

 21 

  22 
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