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Abstract 
 

Nonlinearity and missing variables that are correlated over space pose serious problems 
for spatial data analysis.  Imposing less structure than standard spatial lag models while being 
more amenable to large data sets, non-parametric and semi-parametric methods offer significant 
advantages for spatial modeling.  While often using fewer degrees of freedom than standard 
fixed effects estimators, non-parametric methods also can be adapted to allow for both 
continuous and discrete spatial trends in both the dependent variable and the marginal effects of 
the explanatory variables.  Since it is unlikely that the researcher can specify the true structure of 
a model, it is critical that spatial effects be tested for robustness. 
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1. Introduction 

 The goal of many empirical studies in urban economics, regional science, and geography 

is to measure the effects of proximity.  For example, in its simplest form the Alonso-Muth-Mills 

model of urban spatial structure predicts that distance from the city center is the sole determinant 

of the spatial variation in variables such as land values, population density, and the per-unit price 

of housing.  In this simple single explanatory variable model, the primary econometric issue is 

functional form:  while theory predicts these variables will decline smoothly with distance from 

the city center, the exact shape of the function is ultimately an empirical issue.  Other studies 

attempt to isolate the effects of proximity to a site while controlling for the effects of other 

variables.  For example, a plethora of hedonic housing studies attempt to determine how sales 

prices vary by proximity to airports, highway interchanges, toxic waste sites, etc.  While the 

results of such studies can be highly sensitive to functional form assumptions, multiple 

explanatory variable models are made more complicated by the necessity of controlling for the 

effects of other variables that may be highly correlated with the one of central interest.  Is it the 

presence of toxic waste that is leading to lower house prices, or is it the fact that the area has 

poor access to areas with growing employment and is filled with badly maintained, outdated 

housing?  Unless the study includes controls for all variables that influence house prices – and 

they are measured properly, and the functional form is correct, and so on – correctly measuring 

the effect of any single variable is an extraordinary difficult task. 

In addition to functional form issues, the other central problem in spatial data analysis is 

that important variables are highly correlated and no study includes all relevant variables.  

Consider the superficially simple task of testing the monocentric city model’s prediction that the 

price of a unit of housing declines with distance from the city center.  It is easy to assemble a 

large data set with sales prices and distances.  But the model predicts that it is the price of a 
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single unit of housing that declines with distance.  Since housing does not have well defined 

units, it becomes necessary to control for the quantity of housing by using variables like square 

footage, the number of bedrooms, the presence of a garage, lot size, and so on.  No matter how 

long the variable list gets, some variable is always missing.  A missing measure of “quality”, for 

example, will tend to be correlated with income.  If higher income households tend to live farther 

from the city center, it should not be surprising to find that house prices rise with distance from 

the city center even when the model predicts the opposite and even if the per-unit price of 

housing does in fact decline with distance.  

This problem of spatially correlated missing variables is endemic and is not confined to 

direct measures of proximity.  For example, one of the issues examined in the empirical section 

of this paper is the effect of violent crime on house prices.  The measure of violent crime – the 

number of homicides committed in a census tract during a year – is highly concentrated spatially.  

Since murders are more common in low-income districts, house prices will tend to be negatively 

correlated with the homicide rate.  Thus, the model has a spatial dimension even though the 

analysis is not explicitly spatial at first glance. 

The twin issues of functional form and spatially correlated missing variables have largely 

been treated separately in the empirical literature.  Functional form choice is typically addressed 

directly using series expansions or non-parametric estimation procedures.  Spatially correlated 

missing variables are often considered only indirectly through tests for spatial autocorrelation.  

The standard models used to address spatial autocorrelation are based on ad hoc specifications of 

a spatial weight matrix.  A common approach is to begin with a simple functional form, test for 

spatial autocorrelation, and then to estimate a model that includes a spatially lagged dependent 

variable or that accounts directly for spatial autocorrelation in the error terms.  After perhaps 
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including some experimentation with different specifications of the spatial weight matrix, further 

specification testing typically stops.  The main problem with this approach is that it is likely to 

fail in identifying the root cause of the spatial autocorrelation.  Functional form misspecification 

can itself cause residuals to be spatially correlated.  More importantly, if the underlying problem 

is that a spatially correlated variable is omitted from the regression, no amount of statistical 

investigation will uncover the true model.   

Unfortunately, the real solution – adding the omitted variable to the analysis – may not be 

feasible if the data are not available.  In this case, the role of further statistical testing is to assess 

the robustness of the results to alternative model specifications.  We can have more confidence in 

the results if a variety of model specifications lead to similar results.  Note, however, that this 

view of standard spatial econometric models as just another specification test is directly at odds 

with the classical approach under which they typically have been derived.  Standard spatial 

econometric model are often estimated by maximum likelihood methods.  Maximum likelihood 

provides consistent and efficient estimates if the full model – including the functional form and 

the error distribution – is known in advance.  But in many cases the whole reason for estimating 

the spatial econometric version of the model is that the base equation produced spatially 

autocorrelated errors.  In addition, standard models require the manipulation of large matrices, 

impeding their use for large samples.  The paradox of most spatial econometric models is that 

they are limited to small to medium samples and their very use is an admission that the true 

model structure is unknown, yet maximum likelihood estimators rest on an assumption that the 

true structure is known and require large samples to produce accurate results. 

The focus of econometric modeling shifts once one accepts that obtaining consistent, 

efficient estimates of a known model structure is a virtual impossibility in spatial models.  
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Standard spatial econometric models become just another tool to guide the ultimate model 

specification and to assess the robustness of the results.  Non-parametric and semi-parametric 

models form attractive alternatives to parametric alternatives because they admit at the start that 

the true model structure is unknown.  Unfortunately, the voluminous statistical literature on non-

parametric and semi-parametric models has made only limited inroads into standard spatial 

econometric practice.  The most commonly used procedure, bearing the seemingly innocuous but 

ultimately pernicious sobriquet of “geographically weighted regression”, is a special case of 

standard non-parametric regression procedures.  By focusing on this special case, the advantages 

of other estimators have been neglected.  In addition, many researchers fail to understand that 

non-parametric procedures are not necessarily profligate users of degrees of freedom, that they 

can be used to conduct hypothesis tests, that they can be implemented easily, and that they can 

provide reliable estimates of both predicted values of the dependent variable and the marginal 

effects of the explanatory variables. 

My objective in this paper is to provide an introduction to flexible functional forms and 

non-parametric alternatives to conventional parametric models suited to spatial data analysis.  I 

begin by showing how flexible parametric functional forms and non-parametric alternatives can 

be used fruitfully in a simple single-explanatory variable setting.  Next, I show how semi-

parametric models can be used to combine standard hypothesis and robustness checks for 

multiple explanatory variable models with very large samples.  In both of these settings, non-

parametric models are likely to be superior to standard spatial econometric models.  In addition, I 

argue that the standard approach of using fixed effects to control for location in a multiple 

explanatory variable model is likely to use an excessive number of degrees of freedom while 

providing less accurate results than non-parametric procedures.  I am not arguing that non-
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parametric procedures are the only right way to go about conducting spatial data analysis. 

Rather, my objective is to show that they are a useful approach for conducting hypothesis testing 

and robustness checks when the true model is not known. 

 

2. Single-Explanatory Variable Model:  Series Expansions 

 A simple single-explanatory variable model serves as a good introduction to commonly 

used procedures for analyzing spatial data.  As developed by Alonso (1964), Mills (1972), and 

Muth (1969), the monocentric model continues to serve as the base for most empirical studies of 

urban spatial structure.  Simple versions of the model predict that such variables as land values, 

population density, and the per-unit price of housing will decline monotonically with distance 

from the city center.  Examples of empirical tests of these predictions include Abelson (1997), 

Ahlfeldt and Wendland (2008), Anderson (1982, 1985), Atack and Margo (1998), Coulson 

(1991), McDonald (1989), McMillen (1996), and Mills (1969).   

Somewhat surprisingly, the only paper testing one of the more important predictions of 

the model – that capital/land ratios decline with distance from the central business district (CBD) 

– is McMillen (2006).  In that paper, I used the floor area ratio (i.e., building area divided by land 

area) as a measure of capital intensity.  I use a similar data set here to illustrate some basic tools 

for spatial data analysis.  As in the previous paper, the basic data set includes all small-scale (six 

units or less) residential properties in Cook County, an area of over 5 million people, including 

Chicago and many of its suburbs.  Using 2003 assessment data for 1,006,047 properties, I 

calculate average building areas and average land area across 1,322 census tracts.1  The primary 

                                                            
1 Building and land areas are both measured in square feet.  The data set in McMillen (2006) differs slightly in that it 
was drawn from 1997 assessment data rather than 2003.  More significantly, the base data set for the earlier paper 
was smaller since I restricted the analysis to properties that sold between 1983 and 1999 rather than including all 
assessments. 
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explanatory variable for the floor area ratio (FAR) is distance from the CBD (x), measured as 

straight-line miles between the census tract centroid and the traditional city center of Chicago at 

the intersection of State and Madison Streets.2

Figure 1 shows a plot of the raw data.  For the first 25 miles, the graph clearly shows a 

close relationship between the natural logarithm of the floor area ratio and distance from the 

CBD.  Although the function is not linear, the commonly-used negative exponential function is 

clearly a good starting point for the analysis.  The first column of results in Table 1 presents the 

estimates from a regression of y = ln(FAR) on x.  As expected, this simple linear model fits the 

data well, with distance alone accounting for 61.8% of the spatial variation in ln(FAR).  The 

estimated coefficient implies that floor area ratios decline by 7.2% with each mile from the city 

center.3  The predicted values from the regression form the straight line shown in Figure 1.  The 

true relationship is clearly nonlinear, with a steeper gradient near the CBD and a flatter gradient 

at more distant locations. 

The simplest way to account for this nonlinearity is to add powers of x to the estimating 

equation – x2, x3, x4, etc.  Various types of series expansions can often provide better fits with 

fewer additional variables.  Two good choices include the cubic spline (Suits et al, 1978) and the 

flexible fourier form (Gallant, 1981, 1992).  The cubic spline involves dividing the axis into S 

equal intervals ranging from x0 = min(x) to xS = max(x).  The “knots” are the endpoints for the 
                                                            
2 GIS programs make these calculations easy by providing geographic coordinates for the centroids of map layers 
such as census tracts.  By my calculations, Chicago’s CBD has an approximate longitude (in radians) of lo1 = 
-2π87.627800/360 and a latitude of  la1 = 2π41.881998/360.  Let lo2 and la2 represent the geographic coordinates of 
a census tract centroid, again expressed in radians.  Using a standard geographic formula, the distance between the 
census tract and the CBD point is acos(sin(la1)*sin(la2) + cos(la1)*cos(la2)*cos(lo2-lo1))*3958 miles. 
 
3 It is worth repeating here two basic econometric points that are forgotten routinely in this literature.  First, in a 
single-explanatory variable model, R2’s are smaller when the absolute value of the coefficient is smaller, other 
things being equal.  Thus, since the theory predicts that gradients will be smaller as transportation cost declines and 
(most likely) as income increases, it also predicts that the R2 will decline unless the variance of the errors declines or 
the variance of x increases.  Second, aggregated data tend to produce higher R2s than the underlying micro data.  
The impressive fits evident in Clark’s classic (1951) paper remain impressive using current data if one aggregates 
the data to mile-wide rings around the city center. 
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intermediate intervals:  x1 = x0 + (xS-x0)/S, x2 = x0 + 2(xS-x0)/S, …, xS-1 = x0 + (S-1)(xS-x0)/S.  

Associated with each knot is a dummy variable Ds indicating whether x is greater than xs.  The 

estimating equation is  

( ) ( ) ( ) ( ) uDxxxxxxxxy s
S

s
s +−+−+−+−+= ∑

=1

33
03

2
02010 ββββ   (1) 

Equation (1) shows that the spline simply adds a set of interaction terms between dummy 

variables and cubic terms to a standard cubic function.  The fourier approach is similar in spirit 

but starts with a transformation of the explanatory variable, z = 2π(x-min(x))/(max(x)-min(x)).  

The fourier expansion adds trigonometric terms to a base quadratic function: 

( ) ( )(∑
=

++++=
J

j
jzjzzzy

1

2
210 cossinβββ ) + u    (2) 

For example, if J = 2, the explanatory variables are z, z2, sin(z), cos(z), sin(2z), and cos(2z). 

Examples of empirical applications of the spline approach include Anderson (1982, 1985).  

Applications of the Fourier approach include Ihlanfeldt (2004); McMillen and Dombrow (2001); 

Thorsnes, Alexander, and McLennan (2009); and Thorsnes and Reifel (2007). 

 In a single-explanatory variable model, simple visual inspection of the raw data and 

predictions can be sufficient to determine the order of the expansions, S for the spline function 

and J for the fourier expansion.  More rigorous approaches can also be used.  The most popular 

are the Akaike and Schwarz information criteria, both of which impose a penalty on adding 

explanatory variables to a model.  The estimated variance for either equation (1) or (2) is s2 

= , where n is the number of observations and e∑− 21
ien i is the residual for observation i.  The 

spline function has 4+s estimated coefficients while the fourier expansion has 3+2J.  Denoting 

the number of estimated coefficients by k, the two criteria are ( ) nkAIC /2ˆlog 2 += σ  and SC = 
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( ) nkn /)ln(ˆlog 2 +σ .  Optimal values for S and J can be found by minimizing these criteria with 

respect to the number of expansion terms.  Since 2/n < ln(n)/n, the AIC criterion will never 

indicate a higher value for k (and hence S or J) than the SC criterion.  In practice, they often 

indicate the same values. 

 Spline and fourier expansion estimates of the FAR model are shown in Table 1.  The 

number of expansion terms is S = 1 and J = 5 using the AIC criterion.4  The R2s indicate that at 

least 78% of the variance in ln(FAR) is explained by simple functions of distance from the CBD.  

The predicted values are shown in Figure 2.  Both the spline and fourier estimates indicate much 

steeper gradients near the city center and flatter functions at more distant locations.  Consistent 

with the raw data plot, the fourier function estimates are steeper than the spline function near the 

city center.  However, the local rise and fall in the function at the distant edge of the data set, 

which is driven by a few large values of FAR, appears to be largely spurious and suggests that a 

lower value of J may be preferable.  Even with this local rise in FAR, Figure 2 presents strong 

support for the monocentric city model’s prediction that the floor-area ratio declines smoothly 

with distance from the city center.  

 

3. Single-Explanatory Variable Model:  Kernel Regression 

 Non-parametric models take the general form yi = f(xi) + ui.  They impose little structure 

on the model, instead using simple moving averages or local curve fitting to approximate the 

function at pre-defined points.5  Perhaps the most commonly used non-parametric approach 

across all fields is kernel regression.  Letting x be any arbitrary value of the explanatory variable, 
                                                            
4 The Schwarz criterion indicates optimal values of S = 0 and J = 1.   
5 Good, thorough reviews of nonparametric procedures are presented in Loader (1999), Li and Racine (2007), and 
Pagan and Ullah (1999).  The discussion presented here draws heavily from Loader (1999), Pagan and Ullah (1999), 
Cleveland and Devlin (1988), and my own applications.  Useful surveys include Härdle and Linton (1994) and 
Yatchew (1998). 
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the predicted value of y at x is simply a weighted average of the values of y, with weights 

defined by the kernel function K((xi-x)/h) and the bandwidth or window size, h.  The predicted 

value is: 

( )
( )

( ) h
xx

K

yK
xy i

in

i
i

i
n

i
i

−
==

∑

∑

=

= ψ
ψ

ψ
,ˆ

1

1     (3) 

Common kernel functions include the Gaussian, ( ) ( )iiK ψφψ =  where φ  represents the standard 

normal density function; the Bisquare, ( ) ( ) ( 11
22 <−= iii IK ψψψ ); and the Tricube, 

( ) ( ) ( 11
33 <−= iii IK ψψψ ) , among others.  In these expressions, I is a simple dummy variable 

that equals one when the condition is true. 

 Kernel regression predictions are not sensitive to the choice of the kernel, but they are 

quite sensitive to the bandwidth or window width choice.  A “bandwidth” is a fixed value of h 

that does not vary depending on the point where the function is being evaluated.  A “window 

size” is a bandwidth that varies across x.  For example, we might choose to use the nearest 25% 

of the observations to construct the estimated value of y at x.  Thus, the window size for target 

point x, h(x), is simply the 25th percentile value of xxi − .  A simple rule of thumb that serves as 

a useful starting point for the bandwidth is to choose h = 1.06sn-1/5, where s is the standard 

deviation of x and n is the number of observations, while the 25th percentile is a good starting 

point for the window size.  When the values of x are distributed fairly evenly across its range of 

values, there is little difference between working with a fixed bandwidth and a comparable 

variable window size.  However, the variable window approach is preferable when there are 
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areas of x where the data are sparse because expanding the size of the window keeps a very small 

number of observations from receiving undue weight in the calculation of . ( )xŷ

 Cross-validation is perhaps the most commonly used approach for choosing the 

bandwidth or window size.  The usual approach is to calculate ( )xŷ  using every value of x in 

turn as the target value for the kernel regression.  However, observation i is omitted from the 

kernel regression when calculating the predicted value at that point.  The residual for observation 

i is then , and the full residual sum of squares is .  The optimal value 

for the bandwidth or window size is the value that minimizes this residual sum of squares.  Note 

that if observation i were not omitted from that observation’s kernel regression the optimal value 

for h would shrink toward zero:  any local regression with a single explanatory variable has a 

perfect fit within sample if the window is limited to two observations.  Also, note that this 

calculation is computer intensive since separate kernel regressions are calculated for each data 

point and for each value of the bandwidth or window size.   

( )iii xyye ˆ−= ∑
=

=
n

i
ieCV

1

2

 Upon hearing that separate kernel regressions may be estimated for each observation, 

people who have been trained in standard parametric modeling procedures often think that there 

must have been some sleight of hand that prevents all potential degrees of freedom from being 

exhausted in the calculation.  However, non-parametric procedures impose sufficient continuity 

that it is often the case that only a few more degrees of freedom are used when compared with a 

simple linear regression.  As the regression changes from observation i to observation i=1, the 

weights may change very little, producing nearly identical values for ( )ixŷ  and .  The 

degrees of freedom used in estimating the n predicted values of y can be calculated by gathering 

all of the weights implicitly defined by equation (3) into one large, nxn matrix, L, and 

( 1ˆ +ixy )
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writing LYY =ˆ .  Thus, the first row of L has the weights applied to each observation when 

calculating the predicted value of y at observation 1, the second row has the weights for 

observation 2, and so on.  The degrees of freedom used in estimation is then simply the trace of 

L, i.e., d = tr(L).  Loader (1999) uses this degrees of freedom calculation to construct a simple 

alternative to the cross validation criterion, 

( )( )

( )2
1

2ˆ

dn

xyy
nGCV

n

i
ii

−

−

=
∑
=      (4) 

where, unlike the usual CV measure, the predicted values ( )ixŷ  are calculated without omitting 

observation i from the kernel regression.6

 Kernel regressions can also be used to calculate the marginal effect of x at a given point.  

All that is necessary is to calculate the derivative of equation (3) analytically at the target value 

of x.  However, it turns out to be possible to estimate predicted values for the function and its 

derivative simultaneously using local linear regressions.  Note that equation (3) is equivalent to a 

weighted least squares regression of y on an identity vector with weights defined by .   ( )( ) 2/1
iK ψ

The “locally weighted regression” approach generalizes this idea by adding xi-x as an 

explanatory variable.7  Thus, we are using a local linear approximation to predict the value of y 

at point x.  Everything else is the same as before:  to construct ( )xŷ , we first subtract the target 

value, x, from each value of xi, and form the kernel, ⎟
⎠

⎞
⎜
⎝

⎛ −
h

xx
K i .  ( )xŷ  is the predicted value 

from the weighted least squares regression of y on a constant and xi-x with weights of 

                                                            
6 The GCV criterion can also be used to pick the optimal expansion length for spline functions or fourier expansions.  
For these parametric models, d is simply the number of explanatory variables in the regression (including the 
intercept term). 
7 Locally weighted regression was developed by Cleveland and Devlin (1988) and was used first in the urban 
economics literature by Meese and Wallace (1991).   
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( )( ) 2/1
iK ψ .  The only difference from kernel regression is the addition of the explanatory 

variable to the constant term.   is the predicted value of the regression at x( )xŷ i = x, i.e., it is the 

intercept of the weighted least squares regression.  The coefficient on the xi-x is an estimate of 

the slope of the function at x.  However, it is very important to recognize that the optimal 

bandwidth or window size is likely to be much larger when the objective is to estimate the 

marginal effect of x on y rather than to predict y directly.  How much larger remains unclear at 

this point; twice the value indicated by the CV or GCV criterion is a reasonable starting point. 

 LWR estimates of the FAR model are shown in Figure 2.  I used the GCV criterion to 

pick the window size.  After varying h from 10% to 30% in increments of 1%, the lowest value 

of the GCV occurs at h = .14.  At this value, tr(L) = 13.99, i.e., approximately 14 degrees of 

freedom are used to predict the value of ln(FAR) at every data point.  This figure compares with 

5 degrees of freedom for the spline function and 13 for the fourier expansion.  Figure 2 suggests 

that the LWR estimator combines the best features of the other two approaches.  It successfully 

tracks the sharp rise in ln(FAR) near the city center, while being less influenced by outliers at 

large distances.  However, there is no particular reason to prefer any of the approaches over 

another.  Since they are all easy to calculate, it is a good idea to compare the results for several 

choices. 

 

4. Spatial Lag Models 

 Although they are analyzed elsewhere in this special issue, some comment is in order 

here concerning spatial lag models, which are a commonly used alternative to the flexible 

functional form approaches considered so far.  The two standard spatial models are the spatial 
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AR model, Y = ρWY + Xβ + u and the spatial error model, Y = XB + u, with u = θWu + e. 

Solving for Y the models can be written as follows: 

 

( ) ( ) uWIXWIY 11 −− −+−= ρβρ      (5) 

( ) eWIXY 1−−+= θβ       (6) 

W is an nxn weight matrix with (usually) pre-specified weights.  A common practice is to define 

W such that each tract bordering a zone on a map is given equal weight, with the weights 

summing to one.  Thus, the first row of W might have four values of 0.25 with zeros elsewhere, 

and the second row might have five values of 0.20.  Alternatively, W might be based on distance, 

e.g., giving each observation in a one-mile radius equal weights that sum to unity, with all other 

values equaling zero. 

Note the remarkable similarity between the specification of W and the kernel weight 

function.  Indeed, the common approaches mentioned here are equivalent to a “rectangular” or 

“uniform” kernel with a very narrow bandwidth or window size.  An important difference is that 

the spatial lag approach allows the researcher to test formally whether a single parameter – ρ or θ 

– equals zero, which is easier than formally testing for linearity as the null model in a non-

parametric regression equation.  However, the spatial lag model is built on a paradox.  The whole 

reason for introducing the spatial weight matrix is that the base Y = XB + u model leaves 

unexplained spatial effects in the residuals, yet a parametric structure is being imposed on the 

data as though the true model structure were known beforehand.  Both approaches require 

manipulation of nxn matrices, yet the models are typically estimated using maximum likelihood 

procedures that require large samples to be reliable.   
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Though the spatial AR model and the spatial error model often produce nearly identical 

results, the rationale behind them differs markedly.  The spatial error model is typically viewed 

as a quick fix for autocorrelation, a “correction” when the residuals imply some remaining 

dependence even though the base equation appears reasonable.  This approach is troublesome 

because troublesome because it requires the researcher to specify the actual structure of the 

errors – the unknown part of the equation.  The spatial error approach estimates a fully 

parametric model using maximum likelihood procedures, yet the reason that it is being used is 

that the true structure of the model is unknown.  Flexible functional form and nonparametric 

methods can accomplish the same objective of reducing spatial autocorrelation without imposing 

arbitrary parametric structure. 

Although the spatial AR model also is often treated as a quick fix for spatial 

autocorrelation, it actually makes more sense than the spatial error model because it tries to 

specify how the dependent variable responds to its neighboring values.8  Structure is clearly 

necessary to express the relationship between each of the n values of y and each of its n-1 

potential neighbors.  If the goal is to test the significance of nearby values of the dependent 

variable on y, a parametric model such as equation (6) is the only feasible way to proceed.  But 

unless the objective is to estimate this causal relationship, there is no reason to impose arbitrary 

structure on the model simply because spatial autocorrelation is present in the residuals.  Instead, 

further investigation is needed to determine the true structure of the model, or we should admit at 

the start that the true nature of the spatial model is unknown by using flexible functional forms or 

non-parametric procedures. 

                                                            
8Bordignon, Cerniglia, and Revelli (2003); Brett and Pinkse (2000); Brueckner (1998); Brueckner and Saavedra 
(2001); Case, Rosen, and Hines (1993); Fredriksson and Millimet (2002); Millimet and Rangaprasad (2007); and 
Saavedra (2000) are examples of good applications of the spatial lag model.  Brueckner (2006) provides a general 
framework for theory leading to a spatial lag model. 
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Table 2 presents estimates of two spatial AR models. The first model has distance from 

the city center as its single explanatory variable, while the second uses the spline model as its 

base.  The estimate of ρ is highly statistically significant in both cases, falling from a very high 

0.833 to a still high value of 0.709 in the spline model. 9 Thus, spatial autocorrelation remains in 

the model even after adopting a highly flexible functional form.   

How serious is this spatial autocorrelation problem?  An advantage this simple empirical 

application is that it allows us to analyze the data with simple graphs.  There is some 

disagreement in the literature concerning the best way to base the predictions in the spatial lag 

model.  One possibility is simple to look at the “trend” – the estimated values of XB, ignoring 

the contiguity matrix.  In his excellent “SPDEP” package written for the software program “R”, 

Roger Bivand suggests basing the predictions on a combination of the trend and the “signal” 

component.  The signal could be calculated as WYρ̂ , but since this involves making predictions 

of the dependent variable based on its own values, Bivand suggests using a spatially lagged 

version in its place using the relationship .  The estimated trend and 

the combined trend and “feasible signal” are shown in Figure 3 and 4 for the linear and spline 

versions of the spatial lag model.  Either one predicts Y well, but neither trend is an accurate 

characterization of an overall trend that clearly is close to the LWR estimates, which also are 

shown in Figure 3 and 4.  Though the overall prediction is good, the decomposition of the 

prediction into trend and signal components does not appear useful in this example.   

( ) βρρρ ˆˆˆˆ 1 XWIWWY −−=

Another possible basis for predictions in the spatial lag model is the deterministic portion 

of the right hand side of equation (5), .   These calculations are shown in ( ) βρ XWIY 1ˆ −−=

                                                            
9 For both models, I use first-order contiguity to define the spatial lag matrix for the census tracts.  The models are 
estimated by maximizing the log-likelihood function implied by equation (5) under the assumption that the 
underlying errors (u) are independently and identically distributed normal. 
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Figure 5 for the linear and spline versions of the spatial lag model.  Neither set of predictions 

appears much different than its counterpart regression with ρ set to zero (these regressions are 

not shown here to keep the figure simple).  The primary difference between the spatial lag 

predictions and the comparable regression estimates is the small amount of noise around the 

clear trends.  Together, Figures 3-5 suggest that the spatial lag model’s primary benefit is to 

capture some local variation in the dependent variable around its overall trend.   

 

5. Multivariate Locally Weighted Regression 

 Non-parametric approaches can easily be modified to take into account the local variation 

in ln(FAR), i.e., the “signal” component evident in Figure 3 and 4.  All spatial variables are 

implicitly functions of the underlying geographic coordinates.  Let lo and la denote the 

geographic coordinates, i.e., the longitude or latitude.10  The most common approach in a model 

with two explanatory variables is to use a simple product kernel:  
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K  , where lo and la are the target values and 

the subscript i indicates the observation, as before.  Any kernel listed above can be used; the 

overall kernel is simply the product of the two individual kernels.  In practice, researchers 

typically use a single bandwidth or window size, h, in place of the two individual values.  In 

order to do so, the variables must first be normalized by dividing by their standard deviations to 

remove scale differences.  After constructing this bivariate kernel, the kernel regression estimates 

can be constructed as before, or the LWR version can be estimated using a weighted least 

squares regression of y on an intercept, loi-lo, an lai-la.  Though not shown here, the predicted 

                                                            
10 The geographic coordinates could just as easily be the distances north and west of a given point, or polar 
coordinates could be used as in Cameron (2005). 
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values will look similar to the sum of the trend and signal components of the spatial AR models 

shown in Figure 3 and 4. 

 In practice, researchers in urban economics, regional science, and geography have used a 

variant of LWR that has come to be known as “geographically weighted regression” (GWR).  In 

Figures 1-4, the base model takes the form iii uxy ++= 10 ββ .  My emphasis so far has been on 

finding a simple relationship between y and x, but we might also consider a variant of the model 

in which the coefficients β0 and β1 vary spatially, i.e., they are functions of lo and la.  The model 

becomes ( ) ( ) iiiiiii uxlalolaloy ++= ,, 10 ββ .  In the statistical literature, this model is referred 

to as a “conditionally parametric model” (CPAR) because given the values of lo and la, the 

model is a simple parametric function of x.  The CPAR model is considered in detail by 

Cleveland, Grosse, and Shyu (1992) and Cleveland (1994), while still more general versions are 

analyzed in Hastie and Hibshirani (1993).  The spatial version of the model was first used by 

McMillen (2006), although the GWR name was coined by Brunsdon, Charlton, and 

Fotheringham (2006). 

 In practice, the kernel function for the spatial version of the CPAR model is more often 

based on the simple distance between two points rather than the underlying geographic 

coordinates.  Thus, if lo and la are the target coordinates and loi and lai are the coordinates for 

observation i, then the distance between the target point and observation i is simply di.  A 

univariate kernel can then be used, i.e., ⎟
⎠

⎞
⎜
⎝

⎛
h
d

K i , and the estimated value of y at the target point is 

constructed using a weighted least squares regression of y on xi-x.  This approach reduces the 

problem to what amounts to a simple univariate LWR model, but the argument in the kernel is 

di/h rather than (xi-x)/h.   
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 One problem that has not been addressed adequately in the literature is that x is itself a 

function of the geographic coordinates when it is measure of proximity.  Thus, the model can be 

written as ( ) ( ) ( ) iiiiiiiii ulaloxlalolaloy ++= ,,, 10 ββ  or simply ( ) iiii ulalofy += , .  As the 

bandwidth or window size decreases, there may be virtually no independent variation of x and 

the two geographic coordinates.  Thus, small window sizes will lead to imprecise estimates of 

the marginal effect of x.  It may be that this issue is similar to the earlier argument that larger 

values of h are needed when the objective is to measure marginal effects rather than to simply 

construct predicted values for the dependent variable.  More work is required on bandwidth and 

window size selection for spatial models in which the objective is to measure marginal effects of 

an underlying measure of proximity. 

 

6. Multivariate Regressions with Multiple Measures of Proximity 

 Non-parametric estimation suffers from a “curse of dimensionality” – the variance of the 

estimates increases rapidly with the number of variables.  In this situation, semi-parametric 

models become an attractive alternative to full non-parametric estimation.  Semi-parametric 

models separate the equation into parametric and non-parametric components, i.e.,  

uZfXY ++= )(β       (7) 

where X is a set of variables whose effects on Y are assumed to be modeled adequately using a 

simple parametric function and Z is a set of variables whose effects enter the equation non-

parametrically.  Z might be restricted to a single variable; it might include the geographic 

coordinates only; or it might simply include a subset of the full explanatory variable list. The 
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advantage of the semi-parametric approach is that it imposes parametric structure where the 

structure may be reasonable, while leaving the structure of the equation unrestricted for another 

set of variables.  Hypothesis testing is easy because the parametric portion of the regression 

produces coefficient estimates and standard errors, and degrees of freedom are preserved by 

confining non-parametric modeling to Z alone. 

 Following Robinson (1988), the steps for estimating the semi-parametric model are: 

1. Use a non-parametric estimation procedure – 
kernel regression, LWR, CPAR, etc. – to construct predicted values for Y and each 
variable in X using Z as explanatory variables.  The residuals from these non-parametric 
regressions are ey and ex.   

2. Regress ey on ex using standard linear regression 
procedures.  The coefficients on ex are the estimated values of β, and the usual standard 
errors from this regression are appropriate for .  The predicted value for the parametric 
part of the regression are  (not ).  

β̂

β̂X β̂xe
3. Use a non-parametric procedure to estimate 

f(Z); the dependent variable is  and the explanatory variables are Z. β̂XY −
4. The predicted value of the dependent variable is 

.   ( )ZfXY ˆˆˆ += β
 

Thus, the semi-parametric estimator involves no additional programming effort beyond that 

required to construct the simple non-parametric models discussed in previous sections. 

 It is also possible to use flexible series expansions in place of the semi-parametric model.  

Generalizations of the fourier and spline approaches are available for two variables.  Indeed, 

these approaches are probably preferable to a semi-parametric approach if the goal is simply to 

allow for nonlinear effects in a single variable such as distance from the CBD.  However, the 

semi-parametric approach is a particularly easy and flexible approach for modeling broad spatial 

trends while also permitting the effects of other explanatory variables to vary by location.   

Table 3 presents fixed effects estimates and Table 4 presents semi-parametric results for a 

representative hedonic price function.  The data set includes all sales of small residential homes 
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(six units or fewer) in Chicago for 1990-1991 and 1993-1999 (data for 1992 are unavailable). 

With 82,807 observations, the spatial AR and spatial error models are not even feasible to 

estimate.  In addition to standard housing characteristics, the regression includes controls for 

several variables that are explicitly spatial:  proximity to an elevated train line (the “EL”) or 

other rail line, distance from the Chicago CBD, distance from an EL stop, and distance from 

Lake Michigan.11  In addition, I have included a variable – the number of murders in a census 

tract in a year – meant to be representative of the type of question often addressed using hedonic 

analysis:  how much will households pay for a reduction in the number of homicides in the area?  

Although this variable is not explicitly spatial, crime rates are clearly higher in some areas than 

in others.12   

 Table 3 presents descriptive statistics, a base linear model, and two specifications with 

spatial fixed effects.  The “community area” is a neighborhood definition for Chicago dating to 

studies done by University of Chicago sociologists in the 1930s.  Although the community areas 

are large and comprise some heterogeneous areas, they are still in common use both by 

academics and by real estate agents, and each community area is sufficiently large to include a 

good number of observations.  In contrast, census tracts are so small that many had no sales of 

small residential properties during this time.  The fixed effects estimator becomes a very blunt 

instrument when only a few observations are in a group.  Since identification comes from the 

deviations of the individual values from their group means and there may be virtually no 

variation in spatial variables within groups, it should not be surprising to find that the 

coefficients are quite sensitive to the number of fixed effects.   The z-values drop dramatically 

                                                            
11 Many authors have used hedonic studies to measure the benefits of proximity to transit lines; good examples 
include Baum-Snow and Kahn, Bowes and Ihlanfeldt (2001), Gibbons (2004), and McMillen and McDonald (2004). 
12 Examples of studies analyzing the effect of crime on property values include Gibbons and Machin (2005), Pope 
(2008), Pope and Pope (2009), and Schwarz, Susin and Voicu (2003). 
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for variables like distance from the CBD when the number of fixed effects increases from 76 to 

764 – precisely what would be expected from a variable that has very little variation within an 

area as small as a census tract.   

 Table 4 includes comparable semi-parametric specifications, substituting smooth spatial 

trends in the geographic coordinates for the sharp discontinuities at zone boundaries implied by 

the fixed effects specification.13  Although the results for the housing structural characteristics 

are fairly stable as the window sizes increase from 10% to 70%, the coefficients for the explicitly 

spatial variables vary a great deal.  In general, the estimates reach much higher levels of 

statistical significance as the window size increases.  While the two variables of most interest – 

distance from an EL stop and the number of murders – are highly significant across all window 

sizes, the coefficients vary enough to cause significant changes in any cost-benefit calculations 

that might follow from the estimates.  Qualitatively, the results of both the fixed effects and 

semi-parametric specifications are similar:  proximity to EL stops and a high incidence of crime 

are capitalized into home values as expected.  Unfortunately, the magnitudes of these effects are 

quite sensitive to reasonable variations in the specification.   

 This example illustrates clearly the fundamental problem with spatial data analysis for 

multivariate models:  no matter how many variables are included in a model, ultimately the 

model is a function of only two – the geographic coordinates.  This problem should be self-

evident for variables like distance from an EL stop or proximity to Lake Michigan.  It is less 

obvious for variables like crime rates, although they clearly have a strong spatial component.  

The issue even arises for the housing characteristics variables because certain areas of the city 

                                                            
13 I use a tri-cube product kernel and a LWR specification for the nonparametric portions of the estimation 
procedure.  The nonparametric portion of the model includes normalized values of the latitudes and longitudes.  I 
use the excellent LOCFIT library in R to do the calculations.  This procedure includes a sophisticated interpolation 
procedure that produces extremely fast predictions at each data point for very large data sets.  It also produces 
calculations of the degrees of freedoms used in estimation and the GCV and CV values. 
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are more likely to have small lots, old houses, brick homes, fireplaces, and so on.  In the end, the 

independent effects of various spatial variables are identified only through functional form 

assumptions.   

To a certain extent, this observation is trivial – after all, distance from the CBD is one 

function of the geographic coordinates, while distance from an El stop is another function of the 

same variables.  But this seemingly trivial point has significant implications.  First, the results of 

models relying heavily on pre-imposed parametric structure should be viewed with a great deal 

of skepticism.  Thus, fixed effects and semi-parametric models are always preferable to a spatial 

error model, and are also preferable to a spatial AR model unless the objective is explicitly to 

model the effects of spatial lags of the dependent variable on itself.  Second, it is important to 

assess the sensitivity of the results to changes in the assumed model structure.  Varying window 

sizes or the number of fixed effects, allowing for nonlinearities, and perhaps omitting some of 

the explicitly spatial variables can help assess the robustness of the results. 

Though either fixed effects or semi-parametric specification can help guide the model 

specification, they have significant differences.  First, it is important to recognize that even the 

small 10% window can use significantly fewer degrees of freedom to control for spatial trends 

than a fixed effects specification.  In the example here, the number of degrees of freedom used to 

estimate f(z) ranges from about 7 for the 70% window to 40 for the 10% window.  In contrast, 

the two fixed effects specifications use 76 and 764 degrees of freedom to accomplish the same 

objective.   Second, the fixed effects model produces discontinuities at boundaries between 

zones, whereas the usual semi-parametric specification leads to a smooth surface.  If there truly 

are separate effects shared by all observations in a zone, then the fixed effects model is the 
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correct one.  But if the goal is to account for broad spatial effects using a fairly arbitrary set of 

fixed effects, a non-parametric approach is likely to be better. 

 

7. Extensions and Alternatives 

Although the literature on non-parametric and semi-parametric spatial data analysis is 

extensive, important work remains to be done.  Perhaps most importantly, research is needed to 

establish rules for choosing bandwidths and window sizes when the objective is to estimate 

marginal effects rather than prediction.  Much of the concern about highly variable coefficients 

in CPAR models is a result of choosing small bandwidths based on rules designed to produce 

good predicted values of the dependent variable.  In general, more attention needs to be paid to 

methods for hypothesis testing in non-parametric models.   

Work is also needed in generalizing existing non-parametric methods to spatial data.  

There is no reason that the fixed effects estimator – which produces discontinuities at boundaries 

between zones – should be the primary alternative to non-parametric estimation with smooth 

spatial kernels.  It is possible to use left and right sided kernels (e.g., using all points to the west 

or east of a target points) rather than kernels that are centered on the target location.  Many years 

ago, McDonald and Owen (1986) proposed a “split linear fit” procedure that uses a weighted 

average of right, left, and centered windows (along with variations in the bandwidth) to estimate 

a model that allows the data to determine the appropriate degree of smoothness.  To my 

knowledge, my first attempt at non-parametric modeling remains the only application of this sort 

of estimator to spatial data (McMillen, 1994).  This sort of non-parametric estimator has the 

potential to combine the best features of non-parametric estimation and fixed effects models. 
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 Although spline functions have a long history in urban economics, series expansions are 

still not commonly used in spatial model.  This too is an area where more familiarity with the 

statistical literature could produce large payoffs for spatial modeling. 

 Spatial data analysis can be simpler when panel data are available or when geographic 

zones are discrete.  For example, consider Black’s (1999) influential paper using house prices to 

measure the value of school quality.  By comparing house prices on either side of a school 

district boundary, she hopes to “effectively remove the variation in neighborhoods, taxes, and 

school spending” (Black, 1999, p. 577).  Similar estimation strategies have been used by such 

authors as Cunningham (2007) to analyze the effects of growth controls and Greenstone and 

Gallagher (2008) to analyze the benefits Superfund-sponsored cleanups of hazardous waste sites.  

Although the approach helps to reduce the effects of missing spatial variables, it may not 

eliminate the problem altogether.  For example, suppose that homes on one side of the district 

boundary were poorly built or since have been poorly maintained.  Unless adequate controls are 

included for these effects, the analysis may spuriously indicate that low-quality schools lead to 

low prices when the actual problem is that low-quality housing leads to low prices.14  More 

generally, a potential problem with the approach is that it requires that spatial effects be confined 

to a simple discrete change at zone boundaries.  Spatial variation within zones can severely bias 

the results. 

With panel data, it may be possible to isolate the effect of changes in a critical variable, 

e.g., the effect of new transit lines on house prices (Baum-Snow and Kahn, 2000; Gibbons and 

                                                            
14 Greenstone and Gallagher’s (2008) approach is somewhat different from Black’s in that they rely on a regression 
discontinuity approach, comparing “housing market outcomes in the areas surrounding the first 400 hazardous waste 
sites chosen for Superfund cleanups to the areas surrounding the 290 sites that narrowly missed qualifying for these 
cleanups” (Greenstone and Gallagher, 2008, p. 951).  But the issue is similar in that the approach is based on an 
assumption that the areas that just missed Superfund designation are not systematically different from qualifiers.  
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Machin, 2005; McMillen and McDonald, 2004).  Indeed, this idea is the central idea of repeat 

sales models (Case and Shiller, 1989).  But again the approach may not be entirely effective if 

there is spatial variation in missing variables that also influence house price changes.  The 

standard repeat sales approach hinges on the assumption that the effects of other variables – both 

the values of the variables and their coefficients – are not changing over time.  In general, 

models taking advantage of “natural experiments” to analyze the effects of a change in a variable 

rely heavily on an assumption that no other important changes took place, or that the changes are 

taken into account adequately using various control variables.   

 

8. Conclusion 

 My focus in this paper has been on cross-sectional spatial data analysis.  I argue that the 

main difficulty with modeling spatial data is a combination of nonlinearity and missing variables 

that are correlated over space.  While spatial lag models attempt to account for these problems 

using conventional parametric model specifications, they become unwieldy in large data sets and 

rest on an unreasonable assumption that the true model structure is known beforehand.  Since the 

reason for considering a spatial lag model in the first place is that spatial autocorrelation remains 

in the model after an apparently reasonable parametric structure has been assumed, it makes 

more sense to admit at the onset that the true model structure is not known. 

 Given this somewhat pessimistic view of our ability to accurately model spatial data, it 

becomes critical to subject estimated models to a serious of specification tests in order to assess 

the robustness of the results.  Spatial lag models are a useful tool for testing model specifications.  

Series expansions and non-parametric estimators are flexible approaches that have enormous 

advantage when analyzing spatial data.  While often using fewer degrees of freedom than 
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standard fixed effects estimators, they also can be adapted to allow for both continuous and 

discrete spatial trends in both the dependent variable and the marginal effects of the explanatory 

variables.  The key is to avoid becoming tied to a single modeling approach, to become familiar 

with techniques used in other fields, and to think of econometric modeling as a means of testing 

the robustness of a model specification. 
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Table 1 

The Log of Floor Area Ratios:  Series Expansions 

Variable Base Linear 
Model 

Spline Variable Fourier 

Constant -0.078 
(4.017) 

0.626 
(12.634) 

Constant 3.827 
(3.662) 

x = Distance to City Center -0.072 
(46.187) 

-0.223 
(12.987) 

z = 2πx/33.620 -3.740 
(3.775) 

x2  0.006 
(2.395) 

z2 0.518 
(3.295) 

x3  -7.06e-07 
(0.015) 

sin(z) -0.488 
(6.594) 

(x-16.811)3 if x>16.811, 
0 otherwise 

 -2.38e-04 
(2.144) 

cos(z) -1.609 
(2.537) 

   sin(2z) -0.155 
(3.884) 

   cos(2z) -0.424 
(2.656) 

   sin(3z) -0.112 
(3.721) 

   cos(3z) -0.187 
(2.714) 

   sin(4z) -0.036 
(1.514) 

   cos(4z) -0.089 
(2.483) 

   sin(5z) -0.017 
(0.926) 

   cos(5z) -0.046 
(2.275) 

R2 0.618 0.780  0.786 
 

Notes.  Absolute t-values are in parentheses below the estimated coefficients.  The number of 
observations is 1322. 

 



32 
 

 

Table 2 

Spatial AR Models for the Log of Floor Area Ratios 

 

 Base Linear Model Spline 
Constant -0.007 

(0.572) 
0.172 

(4.220) 
x = Distance to City Center -0.013 

(7.781) 
-0.058 
(4.098) 

x2  7.63e-04 
(0.594) 

x3  2.88e-05 
(0.793) 

(x-16.811)3 if x>16.811, 
0 otherwise 

 -1.65e-04 
(1.923) 

WY 0.833 
(45.140) 

0.709 
(27.459) 

 

Notes.  Absolute z-values are in parentheses below the estimated coefficients.  The number of 
observations is 1322. 
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Table 3 
House Price Regressions with Fixed Effects for Location 

 

Variable Mean 
(std. dev.) Base Model

Community Area 
Fixed Effects  

(76 areas) 

Census Tract 
Fixed Effects 
(764 tracts) 

Log of Building Area 7.057 
(0.507) 

0.423 
(66.767) 

0.363 
(72.614) 

0.325 
(69.564) 

Log of Land Area 8.259 
(0.295) 

0.211 
(46.122) 

0.234 
(62.169) 

0.216 
(58.818) 

Age 63.451 
(0.325) 

-0.003 
(50.749) 

-0.003 
(52.143) 

-0.003 
(46.940) 

Number of Bedrooms 2.846 
(25.001) 

0.003 
(1.300) 

0.019 
(11.379) 

0.023 
(15.234) 

2+ Stories 0.341 
(0.773) 

0.022 
(7.008) 

-0.054 
(22.387) 

-0.056 
(24.515) 

Brick 0.621 
(0.150) 

-0.017 
(5.379) 

0.039 
(15.366) 

0.018 
(7.524) 

Basement 0.773 
(0.485) 

0.028 
(7.596) 

-0.004 
(1.348) 

0.004 
(1.672) 

Attic 0.459 
(0.419) 

-0.020 
(7.194) 

-0.007 
(3.174) 

-0.012 
(6.273) 

Central Air Conditioning 0.189 
(0.498) 

0.094 
(28.114) 

0.018 
(6.778) 

0.008 
(3.472) 

1-Car Garage 0.320 
(0.391) 

0.044 
(13.464) 

0.046 
(17.941) 

0.040 
(17.253) 

2+ Car Garage 0.448 
(0.466) 

0.066 
(20.796) 

0.070 
(28.141) 

0.065 
(28.592) 

Fireplace 0.091 
(0.497) 

0.168 
(37.464) 

0.093 
(25.672) 

0.059 
(17.380) 

Within ¼ Mile of El Line 0.094 
(0.288) 

0.165 
(36.347) 

0.057 
(14.643) 

0.010 
(2.122) 

Within ¼ Mile of Rail Line 0.442 
(0.292) 

-0.076 
(29.991) 

-0.020 
(9.444) 

-0.021 
(8.549) 

Distance from CBD 8.938 
(0.497) 

-0.053 
(76.887) 

0.017 
(7.221) 

0.005 
(0.804) 

Distance from El Stop 1.633 
(2.640) 

0.070 
(45.409) 

0.045 
(16.202) 

0.013 
(2.465) 

Distance from Lake Michigan 5.507 
(1.138) 

2.44e-05 
(0.040) 

-0.004 
(1.726) 

0.027 
(4.651) 

Number of Murders in Census 
Tract during Year 

27.820 
(2.416) 

-0.012 
(172.885) 

-0.001 
(10.769) 

-0.001 
(6.624) 

R2  0.552 0.737 0.788 
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Notes.   Absolute z-values are in parentheses below the estimated coefficients.  The number of 
observations is 82807.  The regressions also include intercepts and eight variables indicating the 
year of sale. 

Table 4 
Semi-Parametric House Price Regressions 

Variable 10% 
Window 

30% 
Window 

50% 
Window 

70% 
Window 

Log of Building Area 0.366 
(73.437) 

0.372 
(71.417) 

0.381 
(68.868) 

0.378 
(66.815) 

Log of Land Area 0.237 
(63.333) 

0.247 
(64.111) 

0.234 
(57.676) 

0.217 
(52.571) 

Age -0.003 
(50.636) 

-0.003 
(54.757) 

-0.003 
(57.752) 

-0.003 
(58.303) 

Number of Bedrooms 0.016 
(9.945) 

0.015 
(8.462) 

0.010 
(5.598) 

0.009 
(4.907) 

2+ Stories -0.053 
(21.943) 

-0.043 
(16.766) 

-0.026 
(9.737) 

-0.020 
(7.105) 

Brick 0.027 
(10.935) 

0.028 
(10.852) 

0.022 
(7.828) 

0.020 
(7.128) 

Basement -0.003 
(1.064) 

0.004 
(1.438) 

0.006 
(1.813) 

0.003 
(0.985) 

Attic -0.009 
(4.451) 

-0.011 
(5.052) 

-0.009 
(3.874) 

-0.011 
(4.429) 

Central Air Conditioning 0.022 
(8.265) 

0.027 
(9.598) 

0.035 
(11.744) 

0.044 
(14.661) 

1-Car Garage 0.048 
(18.756) 

0.048 
(18.025) 

0.051 
(17.968) 

0.052 
(17.721) 

2+ Car Garage 0.072 
(29.073) 

0.073 
(27.815) 

0.078 
(28.117) 

0.080 
(28.124) 

Fireplace 0.094 
(26.138) 

0.123 
(32.826) 

0.148 
(37.512) 

0.158 
(39.369) 

Within ¼ Mile of El Line 0.032 
(8.279) 

0.041 
(10.474) 

0.079 
(19.465) 

0.102 
(24.920) 

Within ¼ Mile of Rail Line -0.035 
(15.970) 

-0.026 
(11.893) 

-0.023 
(10.182) 

-0.024 
(10.455) 

Distance from CBD 0.005 
(0.571) 

0.012 
(3.010) 

-0.011 
(4.417) 

-0.014 
(9.226) 

Distance from El Stop 0.010 
(2.485) 

0.037 
(17.011) 

0.058 
(33.619) 

0.062 
(41.236) 

Distance from Lake Michigan -0.003 
(0.205) 

-0.110 
(12.516) 

0.028 
(3.574) 

0.076 
(11.141) 

Number of Murders in Census 
Tract during Sale Year 

-0.002 
(17.468) 

-0.003 
(32.326) 

-0.005 
(60.435) 

-0.006 
(74.081) 

Degrees of Freedom Used in 
Non-parametric Portion 39.698 15.327 8.982 6.806 
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Notes.   Absolute z-values are in parentheses below the estimated coefficients.  The number of 
observations is 82807.  The regressions also include eight variables indicating the year of sale. 
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Figure 1 

Data Plot for Log of Average Floor Area Ratios in Cook County Census Tracts 
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Figure 2 

Estimated Linear, Spline, Fourier, and LWR Functions 
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Figure 3 

Comparison of Spatial AR with Linear Base Function and LWR Predictions 
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Figure 4 

Comparison of Spatial AR with Spline Base Function and LWR Predictions 
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Figure 5 

Spatial AR Predictions:   ( ) βρ XWIY 1ˆ −−=

 

 


