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Abstract 

 
I take a new approach to measuring world inequality and welfare over time by constructing robust 

bounds for these series instead of imposing parametric assumptions to compute point estimates. I 

derive sharp bounds on the Atkinson inequality index that are valid for any underlying 

distribution of income conditional on given fractile shares and the Gini coefficient. While the 

bounds are too wide to reject the hypothesis that world inequality may have risen, I show that 

world welfare rose unambiguously between 1970 and 2006. This conclusion is valid for 

alternative methods of dealing with countries and years with missing surveys, alternative survey 

harmonization procedures, and alternative GDP series, or if the inequality surveys used 

systematically underreport the income of the very rich or suffer from nonresponse bias. 
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1 Introduction

There is a substantial literature on estimating the evolution of the global distribution

of income over time to assess whether global poverty and inequality are rising or falling. An

important strand of the literature argues that while inequality between countries treated as

observations of equal weight is rising, inequality between all people on the globe is falling, as

some of the fastest-growing countries (China and India) have initially been among the poor-

est. This claim has been advanced by, e.g. Schultz (1998), Bhalla (2002), Bourguignon and

Morrisson (2002), and most recently Sala-i-Martin (2002a and b, 2006) and Chotikapanich

et al. (2007). Similarly, Bhalla (2002), Chen and Ravallion [2001, 2010] and Sala-i-Martin

(2002a and b, 2006) document that world poverty has been falling since 1990 (or 1970).

There also is an alternative part of the literature (Dikhanov and Ward [2001], Milanovic

[2002, 2005, 2012] that contends that global inequality, even if measured between individuals,

has increased. The results derived in the literature are often cited to buttress or undermine

the contention that the recent period of globalization has been good for the global poor, e.g.

Bhalla (2002) or Milanovic (2005).

A common feature of this literature is that all its results are computed using grouped

data on within-country inequality, typically obtained from a secondary dataset such as that

of Deininger and Squire (1996) or its successor, theWorld Income Inequality Dataset (WIID).

This has been done because data on income distributions, particularly for developing coun-

tries, is typically available only through tabulations, quintile shares, or Gini coe¢ cients, with

the microdata either not existing (as with very old surveys) or not being available to the

public (as with many surveys administered by national statistical agencies, including those

of critically important countries such as China).1 While the World Bank has released some

unit record data through its Living Standards Measurement Surveys (LSMS), it is extremely

di¢ cult to �nd, not to mention exploit, a su¢ cient number and variety of surveys to obtain
1Reddy and Minoiu (2007) comment on the paucity of unit record data: "The analysis of unit data may be prohibitive in

terms of time and manpower, and since unit data may be unavailable for numerous country-years...unit data from nationally
representative household surveys for many countries....are not publicly available.



even one survey per country, let alone come close to the degree of coverage provided by a

panel dataset like the WIID. The authors writing in the literature on estimating the world

distribution of income implicitly or explicitly use parametric distributional assumptions to

convert the grouped data into a distribution of income. Bourguignon and Morrisson (2002)

and Milanovic (2002) assume that the distribution inside each quintile or decile2 is egalitar-

ian. Bhalla (2002) and Chen and Ravallion [2001, 2010] use parametrized Lorenz curves (for

instance, Bhalla (2002) uses the World Bank�s Simple Accounting Procedure). Dikhanov and

Ward (2001) approximate the income distribution using a polynomial approximation, and

Chotikapanich et. al. (2007) �t rich parametric distributions, such as the four-parameter

generalized beta distribution, to income data.

However, there is no consensus on what is a good parametric assumption for the

distribution of income. The literature on functional forms for income distributions is large

and largely inconclusive, going back to Pareto (1897) for the Pareto distribution; Gibrat

(1931), Kalecki (1945), Aitchitson and Brown (1957), and more recently Lopez and Servén

(2006) for the lognormal distribution, Salem and Mount (1974) for the gamma distribution,

Singh and Maddala (1976) for the Singh-Maddala distribution, and McDonald and Xu (1995)

on the generalized beta family of distributions, nesting all the above. All of the above

distributions are unimodal; Zhu (2005) has suggested that empirical income distributions

may be multimodal, which opens the door to further candidate distributions.3 Given the

number of distributions considered as plausible candidates, it is hard to be particularly

con�dent about any given parametric assumption.

Parametric assumptions have a deeper methodological problem: since they yield

point estimates of income distributions, parametric assumptions force the researcher to reach

a conclusion on the evolution of the distribution of income. Yet, it may be the case that the
2Hereafter; quintiles, deciles, and other partitions of the income distributions will be referred to as fractiles.
3An alternative approach is to use nonparametric estimators to obtain the world distribution of income strictly from the

data. Sala-i-Martin (2002a and b, 2006) uses kernel density estimation on fractile means to obtain estimates for country income
distributions, and integrates them to obtain the world income distribution. Such an approach avoids the critique of making
arbitrary distributional assumptions that the parametric approach is subject to, and succeeds in obtaining an estimate for
the world income distribution as a whole, rather than just of some of its statistics. However, the approach estimates income
distributions consistently only as the grouping of the data becomes arbitrarily �ne, while in practice, income distribution data
is presented in only a few groups (5 or 10). Therefore, there is need for bounds on poverty and inequality measures of the world
distribution of income that are valid for any underlying functional form of the individual country distributions.
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data are not �ne enough to reach any conclusion; there may exist valid income distributions

that generate the data, yet imply that the overall distribution of income has widened, and

there may also exist equally valid distributions that also generate the data and imply the

overall distribution has narrowed. A critical question is: can we know if this is ever the

case? Yet more generally: if the functional forms that the literature has been assuming

are wrong, it gives no guidance as to what alternative paths global poverty and inequality

might have taken, and what paths they most certainly could not have taken. While there

have been many proposed time paths of global poverty and inequality based on parametric

assumptions, are there any paths of poverty and inequality measures that can be ruled out

on the basis of the data we have?

Hence, it is interesting to ask whether we can dispense with parametric assumptions

completely. In particular, to analyze a time series of the values of some functional of the

world distribution of income (e.g. poverty or inequality), we do not want point estimates,

but sharp upper and lower bounds on the value of this series at each point in time, so that

there may exist income distributions compatible with the data such that these bounds are

attained, but there exist no distributions compatible with the data that imply estimates for

the series outside the bounds. Such a pair of sharp bounds would completely summarize

what the data implies about the series in question: any series passing outside the bounds

would be impossible, whereas any series contained in them would be conceivable.

Another feature of the literature on analyzing the world distribution of income is that

it analyzes poverty and inequality separately, and typically reaches normative conclusions

without a formal aggregation of the two in some theoretically justi�ed manner. While di¤er-

ent ways have been proposed to aggregate growth and inequality into a measure of welfare,

no measure has been selected as de�nitive, and the papers looking at welfare measures are

few (Pinkovskiy and Sala-i-Martin [2009], Atkinson and Brandolini [2010]). There has nei-

ther been an attempt to provide bounds for the evolution of such a measure based on weak

and plausible assumptions. However, the need for such a measure in the normative analysis

of the trends in the world distribution of income is crucial. It is clear that the assertion that
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inequality has risen does not imply that welfare has fallen for most reasonable notions of

welfare; the rise in inequality may have accompanied a Pareto improvement. Similarly, an

assertion that poverty has risen need not automatically imply that welfare has decreased,

since such a connection would be valid only if the welfare function was concerned exclusively

about the poor. Otherwise, rapid growth for a large number of people in other parts of

the distribution could (for a suitable welfare function) o¤set the negative e¤ects of a rise

in poverty. Without a well-speci�ed welfare function that is derived from clear axiomatic

normative principles, we cannot rigorously weigh the di¤erential bene�ts of poverty and

inequality reduction.

The contributions of this paper are threefold. First, I derive sharp nonparametric

bounds for the Atkinson welfare measure (which is commonly calculated and theoretically

justi�ed) in terms of the inequality statistics typically made available by statistical agencies:

fractile shares and Gini coe¢ cients. The formula for a tight upper bound to any inequality

measure when fractile means and boundaries are known is well-known and is presented in

the review by Cowell (2000). Cowell (2000) also reviews tightening of the bounds under

the assumption that the density of income is monotonic decreasing in a given fractile, while

Cowell (1991) provides tight upper bounds in cases in which the fractile boundaries are

known, but the fractile means are unknown. However, to my knowledge, there has been no

work on deriving the bounds for the Atkinson welfare index using the Gini coe¢ cient, with or

without fractile shares.4 This problem is useful, since Gini coe¢ cients are often reported by

statistical agencies and used in the literature, and deriving bounds for the Atkinson welfare

index based on the Gini coe¢ cient allows the researcher to deduce something about the �rst

measure from the second, both for empirical and theoretical purposes. The mathematical

problem of deriving the bounds given the richest available data is nontrivial, but important

to solve as taking advantage of all the available data substantially decreases the width of the

bounds.
4The most related part of the literature derives tight upper bounds to the Gini coe¢ cient based on fractile shares. Gastwirth

(1972) provides a tight upper bound on the Gini coe¢ cient given fractile means and boundaries, while Murray (1978) provides
such a bound when fractile means are unknown, and Mehran (1975) calculates the bound when fractile boundaries are unknown.
This paper also belongs to the more general econometrics literature on nonparametric bounds, e.g. Manski (1995).
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Second, I compute the welfare bounds for all possible countries and years using tradi-

tional GDP and inequality data from the literature: the Penn World Tables (PWT) and the

World Income Inequality Database (WIID) maintained by UNU-WIDER. Notwithstanding

that the ways to compute some of the bounds have been previously known, to my knowledge,

there has not been any work systematically applying these bounds to the problem of calculat-

ing world welfare, and a fortiori, no previous work has used the sharp bounds that I derive.

Under very conservative imputation assumptions for countries and years without inequality

data, I aggregate up the country welfare bounds to obtain bounds for world welfare. My �rst

and main conclusion is that between 1970 and 2006, world welfare has risen unambiguously.

The lower bound on world welfare growth in the baseline speci�cation implies that welfare

rose by 88%, with the e¤ect being equivalent to an increase in the income of every person in

the world of over $2,600 in PPP-adjusted 2005 U.S. dollars. While the fact that world welfare

measured in this way has increased may not be very surprising owing to the strong GDP

growth enjoyed by the world over this period, the extent of growth is remarkable. Moreover,

the sharper bounds that I derive allow a �ner analysis of the consistency of welfare growth

over the sample period: using these bounds, one can conclude that world welfare growth

was always positive for any 10-year period under consideration, whereas under the bounds

of Cowell (2000), such a conclusion could not be drawn. I subject my results to a battery

of increasingly radical robustness checks that con�rm that neither the �nding that world

welfare rose nor (to a lesser extent) the magnitude of this rise are sensitive to neither the

necessary assumptions of my procedure nor the more substantive challenges to the validity

of either the mean income or the survey data

A related result is that the traditional data used in calculating the world distribu-

tion of income cannot reject the hypothesis that world inequality has risen. For almost all

variations in the methodology of computing the bounds, my estimates are compatible with

world inequality rising, or world welfare growing slower than world GDP per capita. The

lower bound estimate for the baseline scenario suggests that welfare rose by only 93% of

what it would have potentially risen by under uniform GDP per capita growth. However,
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I can reject the hypothesis that rising inequality destroyed more than 50% of the welfare

growth that would have obtained under uniform GDP per capita growth for most robustness

checks for di¤erent methodologies of computing the bounds, and for many robustness checks

I can reject the hypothesis that rising inequality destroyed more than 20% of potential wel-

fare growth. In particular, no robustness check can yield a conclusion that inequality has

unambiguously risen.

The paper is organized as follows: Section 2 presents the Atkinson measure of welfare

and reviews its microfoundations. Section 3 presents the derivations of the nonparametric

bounds. Section 4 discusses the data, the numerical implementation of the bounds, and the

imputation assumptions made in order to construct bounds for world welfare. Section 5

presents the baseline results for world welfare and inequality, and discusses the gains from

basing the bounds on more inequality statistics. Section 6 presents the robustness checks: 1)

sampling error, 2) alternative imputation procedures, 3) alternative survey selections from

the WIID dataset, 4) replacing the WIID dataset with the UTIP-UNIDO dataset pioneered

by Galbraith and Kum (2005), 5) replacing the Penn World Tables GDP data by World

Bank GDP data with di¤erent PPP, and 6) accounting for failure of survey coverage at the

top. Section 7 concludes.

2 The Welfare Measure

An important aspect of the debate concerning the world distribution of income is the

question of what are the appropriate metrics of poverty, inequality and welfare. In this

paper, I will concentrate on a single family of welfare measures and its associated family

of inequality measures, appealing to a well-known theoretical argument for the use of this

family. This is the family of Atkinson equally-distributed income equivalents and inequality

indices, introduced in Atkinson (1970). Atkinson treats the problem of assigning a welfare

rating to an income distribution as equivalent to the problem of assigning utility ratings to

lotteries. The Atkinson equally-distributed income (hereafter the welfare measure) is the

certainty equivalent of the distribution of income treated as a lottery, whereas the Atkinson
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inequality measure is the risk premium divided by the mean income. If it is assumed that

utility is CRRA with risk aversion 
, which is a standard assumption in most empirical work,

and is empirically supported in e.g. Chiappori and Paiella (2006), the relevant welfare index

becomes

W (
) =

�Z 1

0

x1�
dF (x)

� 1
1�


and the relevant inequality index is

A (
) = 1� W (
)

�

where � is the mean income.

In terms of choice over lotteries, A (
) is the relative risk premium of the income distrib-

ution.

Atkinson�s index resolves the chief problem in the construction (or even conceptual-

ization) of a welfare index: the need to make interpersonal comparisons. Instead of assuming

that the evaluator has some social preferences that allow her to trade o¤some utilities against

others, the evaluator treats the income distribution as a lottery out of which she must draw

a prize, and values this distribution accordingly. The choice of the (perfectly sel�sh) evalu-

ator is then the choice she would make behind the Rawlsian veil of ignorance (although the

welfare index would be the Rawlsian SWF only for 
 !1).

It is obvious that for 
 � 1, any income distribution with an atom at zero income

produces maximum inequality (an Atkinson index of 1, or an equally-distributed income of

zero), and it is also immediate that no allocation of fractile shares nor any value of the Gini

coe¢ cient can rule out the income distribution having an atom at zero income, so for all


 � 1, it is impossible to construct a lower bound for welfare. Moreover, as 
 ! 1 from

below, the lower bound continuously drifts towards zero. Hence, bounds based on the fractile

shares and the Gini coe¢ cient can only be constructed for 
 2 (0; 1). (In particular, using

the Rawlsian SWF or attempting to test for �rst-order stochastic dominance cannot be done
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if one is to remain totally agnostic about the distribution as is done in this paper). I will

use the central value in this interval, 
 = 0:5, as the baseline for this paper. Statistics for

the Atkinson inequality index for 
 = 0:5 are routinely reported by developed countries (e.g.

the United States Bureau of the Census reports Atkinson inequality indices for 
 = 0:25,


 = 0:5 and 
 = 0:75; the Luxembourg income study reports indices for 
 = 0:5 and 
 = 1),

although I will show that the baseline result holds for 
 as high as 0:9. I also perform a

robustness check for values of 
 higher than unity by assuming a lower bound for income

equal to 1=5 of the lowest fractile mean. Under this assumption, my baseline results are

valid for 
 as high as about 1:5.

3 Analytical Derivation of Uniform Bounds

In this section, I will �rst list a few facts about Lorenz curves and about the formulation

of the optimization problems that yield the bounds in Lorenz curve space. I will then solve

the optimization problems when the Gini coe¢ cient is speci�ed. Finally, I will then describe

the solutions of the problems with fractile shares only, which is known by the literature on

bounding inequality measures, and is reviewed in Cowell (2000).

3.1 General Remarks

I �rst review a number of basic facts about Lorenz curves, which can be found in, e.g.

Gastwirth (1972) or derived by inspection.

1. The Lorenz curve L (p) of a nonnegative random variable distributed according to F (x)

is L (p) = 1
�

R F�1(p)
0

xdF (x) ; where p 2 [0; 1]. This is an increasing and convex function,

such that L (0) = 0 and L (1) � 1 (if a set of measure zero of the population holds a

set of positive measure of income, then L (1) < 1).

2. Conversely, for any increasing and convex map L (p) of [0; 1] into itself, there exists

a distribution function F (x) such that L (p) is the Lorenz curve of the nonnegative
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random variable distributed according to F (x) :Hence, the set of Lorenz curves is

L = fL 2 C [0; 1] : L is increasing, convex, L (0) = 0; L (1) � 1g

3. Any Lorenz curve is continuously di¤erentiable at all but countably many points, and

where it exists, L0 (p) = x
�
;where x = F�1 (p) :

4. The Gini coe¢ cient of a distribution with Lorenz curve L (p) is G = 1� 2
R 1
0
L (p) dp.

5. The Atkinson welfare index of a distribution with Lorenz curve L (p) is W (
) =

�
�R 1

0
(L0 (p))1�
 dp

� 1
1�

.

Now, suppose we are given k fractile shares, or statements that individuals from the

pith to the pi+1st percentile (or in [pi; pi+1]) own fraction Qi of the national income,

with the cumulative share of national income owned by the lowest pi earners being qi.

Suppose also that the mean of the income distribution is normalized to 1; then, the

fractile boundaries, a�i and a
+
i are de�ned as the (normalized) incomes of the pith and

pi+1st percentile of the income distribution respectively. The (normalized) mean income

of fractile i is de�ned as mi = Qi= (pi+1 � pi) :

6. By the de�nition of a Lorenz curve, an assignment of fractile shares equivalent to a set

of constraints L (pi) = qi, i = 1; :::k, where pi is the fraction of the population in or

below fractile i, and qi is the cumulative share of national income owned by this fraction

of the population.

7. The statement that the boundaries of fractile i are
�
a�i ; a

+
i

�
is equivalent to the con-

straint lim
p#pi
L0 (pi) � a�i and a+i � lim

p"pi+1
L0 (pi) (the inequalities are strict whenever there

is no mass in the distribution of income around the pith or pi+1st percentile).

Therefore, the main analytical problem of this paper can be formulated as follows:
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max or min
L2L

Z 1

0

(L0 (p))
�
dp st. 1)8i = 1; :::; k; L (pi) = qi; (1)

2)

Z 1

0

L (p) dp = 0:5 (1�G) =: �G

where � 2 (0; 1)

It will be useful to de�ne the constraint set:

Lc =
n
L 2 L : �G =

R 1
0
L (p) dp and 8i = 1; ::; k; L (pi) = qi

o
3.2 Maxima

3.2.1 Maxima with Gini only

The optimization problem to maximize W (1� �) for given Gini is

max
L2L

Z 1

0

(L0 (p))
�
dp st. �G =

Z 1

0

L (p) dp

Since the objective function is concave in L, the maximum is unique and is attained in the

interior, so this is a standard problem in the calculus of variations, since L (p) is a.e.-twice

di¤erentiable. To solve this problem, I form the Lagrangian

L = (L0 (p)�)� �L (p)

and compute the Euler equation:

@L
@L

=
d

dp

�
@L
@L0

�
, � = � (1� �)

�
L0 (p)��2

�
L00 (p)

Proposition 1 The solution to the optimization problem is given by

L� (p) =
1� �
�

�
c1 �

�

�
p

�� �
1��

� c2

where the constants c1; c2 and the Lagrange multiplier � can be calculated from the equations
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L� (0) = 0; L� (1) = 1; �G =
R 1
0
L� (p) dp:5

Proof. In text.

Note that the solution is a convex function, and thus a valid Lorenz curve. Hence, the

value of the optimum attained corresponds to a sharp lower bound.

3.2.2 Maxima with Gini and fractile shares

The optimization problem to maximize W (1� �) for given Gini and fractile shares is

max
L2L

Z 1

0

(L0 (p))
�
dp st. 1) �G =

Z 1

0

L (p) dp and 2) 8i = 1; ::; k; L (pi) = qi (2)

The Euler equation is the same as in problem 1, however, the constants c1 and c2 are

now allowed to vary by the interval i. An upper bound could be obtained by calculating

the values of c1;i and c2;i from the conditions L (pi) = qi, however, unless the sequence fc2;ig

is monotone increasing, the resulting solution is not convex, and hence, does not belong to

L. Hence, although it provides a greater lower bound than the solution when only the Gini

constraint, or only the fractile shares are present, this bound is not sharp.

If in addition to the fractile shares, the fractile boundaries
�
a�i ; a

+
i

	k
i=1
were given, a

sharp upper bound could be obtained by solving the equivalent problem:

max
L2L

Z 1

0

(L0 (p))
�
dp st. 1) �G =

Z 1

0

L (p) dp, 2) 8i = 1; ::; k; L (pi) = qi

3)lim
p"pi
L0 (p) � a�i and lim

p#pi+1
L0 (p) � a+i

for some
�
a�i ; a

+
i

	k
i=1

where a�i is the lower bound of interval i, while a
+
i is the upper

bound of interval i. Now, de�ne

R (p) := max
i=1;:::;k

�
a�i (p� pi) + qi; a+i (p� pi+1) + qi+1

	
5The implied CDF of this distribution is F (x) = �

�

�
c1 �

�
x
�

���1�
for x 2

�
� (c1)

� 1
1�� ; �

�
c1 � �

�

�� 1
1��

�
, F (x) = 0 for

x < � (c1)
� 1
1�� , and F (x) = 1 for x > �

�
c1 � �

�

�� 1
1�� .
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and consider the modi�ed optimization problem:

max
L2L

Z 1

0

(L0 (p))
�
dp st. 1) �G =

Z 1

0

L (p) dp, 2) 8i = 1; ::; k; L (pi) = qi, 3) L (p) � R (p) (3)

Since the optimal solution must be convex, we have

�
lim
p"pi
L0 (p) � a�i and lim

p#pi+1
L0 (p) � a+i 8i = 1; ::; k;

�
, L (p) � max

i=1;:::;k

�
a�i (p� pi) + qi; a+i (p� pi+1) + qi+1

	
=: R (p)

so the two problems are equivalent.

By Kamien and Schwartz (1991), the solution to this latter problem is characterized as

follows:

1. If L (p) > R (p), then L (p) = 1��
�

�
c1;i � �

�
p
�� �

1�� � c2;i for some c1;i and c2;i

2. If p is a "switching point" between L (p) and R (p) (so 8"; 9p�; p+ 2 N" (p) st. L (p) >

R (p) on [p�; p] and L (p) = R (p) on [p; p+], or vice versa), then, L (p) = R (p) and

L0 (p) = R0 (p) :

Hence, the solution L� (p; a) taking the vector of fractile boundaries a : =
�
a�i ; a

+
i

	k
i=1

as

given is characterized as follows:

Proposition 2 8i = 1; :::; k; 9 p�i ; p+i : pi � p�i < p+i � pi+1 st. L� (p; a) = R (p) on�
pi; p

�
i

�
[
�
p+i ; pi+1

�
and L� (p; a) = 1��

�

�
c1;i � �

�
p
�� �

1�� � c2;i on
�
p�i ; p

+
i

�
; where � solves

�G =
R 1
0
L� (p; a) dp, while p�i ; p

+
i ; c1;i and c2;i solve

1. 1��
�

�
c1;i � �

�
p�i
�� �

1�� � c2;i = R
�
p�i
�
= a�i

�
p�i � pi

�
+ qi

2. 1��
�

�
c1;i � �

�
p+i
�� �

1�� � c2;i = R
�
p+i
�
= a+i

�
p+i � pi+1

�
+ qi+1

3.
�
c1;i � �

�
p�i
�� 1

1�� � a�i with strict inequality i¤ p�i = pi;and

12



4.
�
c1;i � �

�
p+i
�� 1

1�� � a+i with strict inequality i¤ p+i = pi+1:

Proof. In text.

The problem reduces to the �nite-dimensional problem of optimization along the �nite

sequence a, which can be done with standard software. If the fractile boundaries are known,

the formula can be used directly and no optimization is required.

3.3 Minima

The problem is

inf
L2L

Z 1

0

(L0 (p))
�
dp st. 1) �G =

Z 1

0

L (p) dp, 2) 8i = 1; ::; k; L (pi) = qi (4)

It can be shown that the in�mum of this problem is attained by a Lorenz curve that

is a linear spline with corners (possibly) at the points fpig and with no more than one corner

in any interval (pi; pi+1).

Proposition 3 Consider the minimization problem (4). Then, the value of this problem is

identical to the value of the following �nite-dimensional problem:

min
fa�i ;a+i gki=1

(�Xk

i=1

�
�i

�
a�i
�

��
+ (1� �i)

�
a+i
�

����1=�)
(5)

st. 8i = 1; :::; k; �i =
a+i �mi

a+i � a�i
, a�i � mi � a+i � a�i+1 and �G =

Z 1

0

L (p; a) dp

where L (:; a) is the Lorenz curve de�ned by the sequence
�
a�i ; a

+
i

	k
i=1
:

Proof. See appendix.

The proof relies on the following lemma:

Lemma 4 (3-2) Lemma: Suppose that L 2 Lc is piecewise linear with �nitely many corners.

Then, there exist numbers
�
a�i ; a

+
i

	k
i=1

such that 8i = 1; :::; k; a�i � mi � a+i � a�i+1; and
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the Lorenz curve

L̂ = max
i=1;:::;k

�
max

�
a�i (p� pi) + qi; a+i (p� pi+1) + qi+1

		
satis�es L̂ 2 Lc and

R 1
0

�
L̂0 (p)

��
dp �

R 1
0
(L0 (p))� dp:

Proof. See appendix.

The 3-2 Lemma states that any piecewise linear Lorenz curve with �nitely many kinks

that are o¤ the fractile constraints can be replaced with a modi�cation with only 2k such

kinks that satis�es the constraints in the minimization problem (4), and decreases the value

of the program. Heuristically, the minimizing curve must have no more than one kink in each

interval, or no more than 2k kinks overall, which makes the family of possible minimizing

curves �nite-dimensional, and allows them to be computed by standard numerical methods.If

the fractile boundaries are known (or assumed), the formula can be used directly and no

optimization is required.

In the special case that there are no fractile constraints, it is easy to derive an explicit

formula for the maximum Atkinson given the Gini coe¢ cient, as the optimal curve must have

no more than one kink.

Proposition 5 Consider the maximization problem (4) and omit the fractile constraints.

Then, the maximum value of the Atkinson index is given by

max
�
G; 1� (1�G)

1��
�

�
Proof. See appendix.

3.4 Results with Fractiles Only

Cowell (1977) proves that if there are k fractiles, each with known mean mi and fractile

boundaries
�
a�i ; a

+
i

�
, then the maximum welfare is attained at intrafractile egalitarianism:

the distribution is concentrated at the fractile means, and the value of the problem is given
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by
�
1
k

Xk

i=1

�
mi

�

���1=�
. The minimum welfare is attained by complete concentration on

the fractile boundaries, or by the solution to the �nite-dimensional optimization problem

(5) omitting the Gini constraint. In particular, a crude (non-sharp) approximation to the

minimizer of welfare with fractiles only can be computed in closed form by setting a�i = mi�1

and a+i = mi+1 for each i.

Figures Ia) and Ib) presents plots of some welfare-maximizing and welfare-minimizing

Lorenz curves (the quintile shares that they are based on are denoted by bold circles in the

diagrams). It is clear that the welfare-minimizing curves are all piecewise linear, while the

welfare-maximizing curves that involve the Gini are nonlinear. Note how the crude approx-

imations to both the welfare-maximizing and welfare-minimizing curves are nonconvex.

4 Implementation

4.1 GDP Data: Penn World Table

The Penn World Table (hereafter PWT) is one of the most cited sources for purchasing-

power-parity-adjusted GDP data. The latest edition (version 7.0) has nearly comprehensive

coverage of 189 currently existing countries since 1970 to 2009. I reconstruct GDP for

currently nonexisting countries (e.g. the Soviet Union, Czechoslovakia, East Germany) by

applying the growth rates of Penn World Tables version 5.6 to the implied GDP for these

countries in version 7.0. This procedure is discussed in detail in Pinkovskiy and Sala-i-Martin

(2009).

A major controversy in the literature is whether estimates of GDP should come

from national accounts or from household surveys. Ahluwalia et al. (1979) pioneered the

combination of national accounts GDP and survey inequality data, which is the dominant

approach today, and is used, e.g. by Bourguignon andMorrisson (2002), Sala-i-Martin (2002a

and b, 2006) and Bhalla (2002). Proponents of using national accounts to estimate the mean

of the distribution of income argue that survey means tend to understate mean income

and sometimes yield implausible implications (see e.g. the discussion in Bhalla (2002)).
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Moreover, national accounts estimates of GDP, and the Penn World Table in particular, are

extensively used in cross-country research on growth and development: in particular, the

seminal works of Barro and Sala-i-Martin (1992,1995); Barro (1999); Acemoglu, Johnson

and Robinson (2001, 2002, 2005); and Banerjee and Du�o (2004) all use Penn World Table

GDP, sometimes in conjunction with the Deininger-Squire dataset on inequality, whereas no

such paper to my knowledge uses survey means. Other papers, such as Milanovic (2002)

and Anand and Segal (2008), strongly criticize the use of national accounts on the grounds

that it is inconsistent to take the distribution of income from one source and the mean of

income from another. A practical consideration in favor of national accounts is that national

accounts estimates are calculated using common methodology for virtually all countries and

years, whereas survey means tend to be available for far fewer countries only in select years,

so further assumptions are required in order to use a series of survey means. Since the focus

of this paper is to present the methodology of the uniform bounds and to observe their

implications for widely used data on the distribution of income, I will use national accounts

as my source of GDP, but I will conduct a robustness check using survey means. Moreover,

in the robustness check correcting for nonresponse, I will attempt to control for possible

mechanisms that lead national accounts and survey means to diverge.

Figures IIa) and IIb) present a brief summary of the data. First, we see that GDP

growth in 1970-2006 has been extraordinary �GDP has nearly doubled.6 Second, we see that

between-country inequality �the value of the Atkinson inequality index with 
 = 0:5 that

would obtain if the income distribution in each country were egalitarian �fell signi�cantly,

with much of the fall taking place after 2000. These results are suggestive of the claim that

world welfare has increased, but are not conclusive, since if within-country inequality has

increased by a substantial amount, welfare could have actually fallen. In fact, these results

could be perfectly consistent with a "nightmare scenario" of a global elite, tiny in number

but evenly distributed across nations, capturing most of the gains to growth in the past

several decades.
6Note that the sample period for this paper ends before the beginning of the global recession in 2008.
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4.2 Inequality Data: The World Income Inequality Dataset

The World Income Inequality Dataset (WIID), maintained by UNU-WIDER, is a sig-

ni�cantly improved and expanded version of the Deininger-Squire (DS) dataset pioneered in

1996. It is probably the most comprehensive, and the most cited source on income inequality

around the world7, presenting over 5,200 surveys for over 150 countries and 79 years. Over

75% of the surveys listed took place after 1970. All the survey data reported include an

estimate of the Gini coe¢ cient, over 2,700 surveys contain quintile shares, and over 2,000

contain decile shares. Moreover, for nearly all the surveys, the database records the coverage

of the survey of di¤erent parts of the country in question, the income concept asked for in the

survey (income or consumption, gross income or net, whether in-kind income is included),

the conversion factor used to obtain inequality between persons from household-level data,

and the statistical agency conducting the survey and the researchers reporting its results.8

However, the WIID, as well as the DS dataset from which it was constructed, errs on the

side of comprehensiveness of coverage rather than quality of surveys. Atkinson and Bran-

dolini (2001) criticize the DS dataset for including poorly conducted and methodologically

unclear surveys alongside well-organized ones, and criticize much research using the dataset

for disregarding the noncomparabilities of surveys with di¤erent income concepts, di¤erent

equivalence scales, and di¤erent underlying populations.9 Hence, an important problem for

any researcher using the dataset is to provide a method of selecting which surveys to use

that avoids these pitfalls.
7The paper introducing the dataset, Deininger and Squire (1996), has 1,884 citations on GoogleScholar.
8There may be concern that the Gini coe¢ cients listed in the WIID are estimated from the presented fractile shares. I have

checked that no Gini coe¢ cient that the WIID presents is given by either the minimum or the maximum value of the Gini
coe¢ cient that is theoretically compatible with the fractile shares (formulas are given in Mehran (1975)). The documentation
to WIID mentions explicitly for a few surveys (121 out of 2240 survey groups) that the Gini was constructed from the fractile
shares. In results not presented, I have recomputed the baseline estimates excluding these Gini data, and the results are
indistinguishable from the baseline results reported in this paper.

9However, it appears that the WIID has drawn lessons from the critique of the DS dataset; in personal communication, Tony
Atkinson noted that "WIDER did a great deal to clean the original DS database; the WIID database is much less subject to
the kind of criticisms that [Atkinson and Brandolini (2001)] made." (Tony Atkinson, personal communication, December 2009).
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4.2.1 Choice of Surveys

I subdivide all surveys in the WIID into groups, hereafter surveygroups, within which

all surveys 1) describe the same country, and the same geographic, demographic and socioe-

conomic population within the country, 2) have the same income concept, 3) collect income

data on the same unit, use the same unit of analysis, and use the same equivalence scale to

convert between the two if they are distinct, and 4) have the same primary and secondary

source. I identify 2240 such surveygroups in the WIID, which means that each contains

on average a little over two surveys, but some have much wider coverage than others. I

then, instead of selecting separate surveys, select entire surveygroups on a heuristic basis by

weighting the following considerations in approximately the following lexicographical order:

1. I give preference to those surveygroups that provide decile shares over those that provide

only quintile shares, and I give preference to surveygroups providing fractile shares over

those that only provide Gini coe¢ cients,

2. I attempt to ensure that the surveygroups cover the longest date range for each country,

and be well-distributed over the sample period, preferring a few surveys in each decade

to thorough coverage of some periods at the expense of others,

3. I attempt to ensure that the surveygroups selected for each country have the same or

similar income concepts, the same or similar equivalence scales and geographical extent,

and the same primary source.

4. I attempt to maintain homogeneity in the characteristics of surveygroups selected across

countries, with surveys asking about disposable income and equivalizing on the basis of

household per capita being preferred. However, there are gross exceptions to this (e.g.

India o¤ers quintile shares only for consumption surveys).

5. In view of the fact that I will need to interpolate and extrapolate to estimate inequality

for years for which I do not have survey data, I choose some surveys outside the sample

period (i.e. before 1970).
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I also maintain some region-speci�c conventions aside from these four general princi-

ples. In particular, I use the Luxembourg Income Study surveys for OECD countries unless

long and detailed series are available in the WIID from the countries�own statistical bureaus.

For Latin American and Caribbean countries, I almost invariably use the surveys provided

by the Socio-Economic Database for Latin America and the Caribbean (SEDLAC), following

the recommendation of WIID. For the populous East Asian countries of China, India and

Indonesia, I use survey data provided by the national statistical bureaus. Finally, owing to

a dearth of surveys for Africa, particularly from the beginning and middle of the sampling

period, I suspend many of the homogeneity requirements and often use consumption survey-

groups when these o¤er more extensive coverage than income surveygroups do. Overall, I

choose surveygroups containing 1094 surveys, of which 1011 lie in the sample period.

For some countries and years, the unit records from household surveys are publically

available. Chen and Ravallion (2010) use a database of over 700 surveys, many of which

were made available to them as microdata, whereas others were provided only in grouped

data form. Their PovCal website contains a description of all the surveys, including whether

their unit records were available, and the parametric estimates of their underlying income

distribution obtained using the Kakwani-Podder method. Furthermore, the Luxembourg

Income Study provides microdata for many household income surveys in the OECD. For all

countries and years for which microdata is available, I use either the published inequality

statistics (Atkinson inequality indices) directly, or (in the case of the Chen-Ravallion data)

I compute Atkinson inequality indices from the parametric estimates obtained by Chen and

Ravallion on the basis of the microdata they used, assuming that these estimates are probably

very close to the actual values of the Atkinson inequality indices in the microdata. Using

microdata decreases the width of my bounds slightly but noticeably in the period 1995-2005

(to which most of the available microdata corresponds), and does not a¤ect them for the

preceding period.10

10For the OECD countries with Luxembourg Income Study data, the Atkinson inequality indices are available only for 
 = 0:5
and 
 = 1. Whenever I compute Atkinson indices with other parameters, I use the 
 = 1 index from the LIS. This does not
a¤ect the qualitative conclusions reached.
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4.2.2 Breadth of Coverage

As is intuitive from Figures IIa) and IIb), inequality does not tend to vary much over short

periods of time, especially when compared to variation in GDP, so interpolation (as opposed,

possibly, to extrapolation) procedures to impute inequality measures for years without data

should be relatively reliable. Hence, while one intuitive measure of the breadth of coverage

is the percent of the world population in the given year who are covered by surveys, a

potentially better measure is the percent of the world population who are either covered by

a survey in that year, or whose inequality measures will be obtained by interpolation (rather

than extrapolation). Hereafter, I de�ne the core to be the set of individuals who are so

covered. Figure IIc) presents these measures. While the direct coverage measure is highly

erratic (depending signi�cantly on whether China and / or India are covered in a given

year), and tends to be below 60%, the size of the core as a percent of the world population

is remarkably continuous, and tends to be above 70% until about 1998, and around 90% for

most of the 1980s and 1990s. Hence, at least until the 2000s, coverage using the WIID is

rather good.

4.3 Numerical Implementation

I have implemented numerically all the bounds described above except for the sharp bound

for the maximum welfare given both the Gini coe¢ cient and the fractile shares. In its place,

I am reporting the crude upper bound for welfare based on Ginis and fractiles, which, while

superior to both the Gini and the fractile upper bounds taken individually, may only be

attained by curves that are not convex. All the other bounds for the maximum are very easy

to implement, as they only rely on �nding the root of a monotonic function in one variable.

The sharp bounds for the minimum welfare given fractile shares (with or without the Gini)

require numerical optimization over a long vector of arguments, the sequence
�
a�i ; a

+
i

	k
i=1
:11

11 It is possible to implement this optimization straightforwardly using the Matlab program fmincon on a standard PC.
While the solution does depend on the initial value chosen for the optimization, and while the program occasionally fails to

20



4.4 Assumptions for Interpolation and Extrapolation

The bounds I have computed given fractile shares and the Gini coe¢ cient say absolutely

nothing in theory about the behavior of inequality in countries and years for which we do

not have data, so the only fully conservative bound for those country-years is the trivial

bound [0; 1]. However, it is accepted in the area of inequality research that inequality tends

to change very slowly and very continuously,12 so in practice, inequality data in a given year

should give a great deal of information about inequality in that country in nearby years. The

average coe¢ cient of variation of the Gini within a surveygroup is only 0.06, and it does not

exceed 0.41 for any surveygroup.

A plausible and easy-to-implement interpolation assumption is that inequality in any

given year for which data is missing is bounded above and below by the inequality in the

closest preceding and following years (hereafter, closest available years) with data available.

Then, the upper bound of inequality for that year is the maximum of the upper bounds of

the inequality in the closest available years, while the lower bound is the minimum of the

lower bounds. For country-years outside the core, this method is tantamount to horizontal

extrapolation of the bounds, which is problematic as it may arti�cially truncate rising trends

in inequality. Hence, I use a more conservative extrapolation procedure that interpolates the

upper and lower bounds linearly if this would result in the bounds widening further apart,

and horizontally otherwise. To avoid upper and lower bounds from reaching implausible

values, I bound them by the maximum upper and minimum lower bounds obtained from the

data within each World Bank region 13. As it is very rare that inequality rises or falls at

a linear rate for an extended interval of time, it is plausible that such extrapolation would

account for the possible dynamics of inequality at the ends of the sample period.

A more di¢ cult problem is to impute inequality for countries with no survey data at

converge, the variation in the result as a function of the initial value is extremely small (the bound on the inequality index
varies by less than 1% of the maximum value of this index with 
 = 0:5 for most observations). As a compromise between
speed and accuracy, I run the program for each survey for no less than twenty randomly selected starting values, and stopping
at the �rst subsequent time the program converges.
12See e.g. Bhalla (2002) or Galbraith and Kum (2005). The latter source considers changes of 5 Gini points or more per year

to be "unlikely, except when they coincide with moments of major social upheaval."
13For a classi�cation of countries into World Bank regions, see Sala-i-Martin (2006)
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all. Reasoning that countries may tend to be like other countries around them, and following

Sala-i-Martin (2006) and Pinkovskiy and Sala-i-Martin (2009), I impute these inequality

measures on the basis of the inequality of the other countries in their World Bank region.

However, to be conservative, I impute the upper bound in every year to be the maximum

upper bound observed in the data for all countries and years in that region, and the lower

bound similarly. I will investigate more and less conservative methodologies for interpolation

in the robustness checks.

5 Baseline Results

5.1 A Simple Test for a Rising or Falling Series

The results for each time series will take the form of upper and lower bounds, rather than

point estimates. Under the assumptions for imputation, as well as under the assumption

that the data is valid, and that sampling error can be ignored, these bounds contain the

true value of the measure of interest with probability 1. Any path of the measure that is

contained within the bounds is therefore consistent with the data, whereas any path that

violates the bounds at any point is inconsistent with it.

There is a simple procedure for drawing conclusions as to whether a series increased

or decreased between two dates. If the lower bound of the series at the earlier date exceeds

the upper bound at the later date, the series fell for sure (with the caveats expressed in the

previous paragraph). If, on the contrary, the upper bound of the series at the earlier date is

exceeded by the lower bound of the series at the later date, the series rose for sure. However,

neither of these statements may be true; in which case, it is impossible to draw conclusions

on whether the series rose or fell between the two dates without further assumptions or data.
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5.2 Example for a Single Country: Chinese Inequality

Before presenting my baseline results for inequality and welfare in the world as a whole,

I present upper and lower bounds on the Atkinson inequality index for China in order to

demonstrate the interaction of my bounding technique, interpolation and extrapolation on

a single consistent set of surveys. Moreover, estimates for China are interesting in their own

right because microdata from Chinese o¢ cial income surveys is not released to the public.

Figure Ic) presents the series for the 
 = 0:5 Atkinson inequality index for China. We see

that inequality in China was between 0.07 and 0.24 in 1970 and 0.16 and 0.28 in 2006, which

is consistent with Chinese inequality rising or falling over this time period (which involved

a transition to capitalism and is believed to have witnessed a substantial rise in Chinese

inequality). We also see that the interpolation and extrapolation procedures appear to be

reasonable and to yield results that are not radically di¤erent from the observed values of

the bounds.

5.3 Baseline results

All the baseline results and robustness checks are summarized in Table I. The table

presents for all variations (except sampling error) 1) the minimum and maximum amounts

by which Atkinson welfare (interpreted as the certainty equivalent of the world distribution

of income) increased between 1970 and 2006, 2) the minimum and maximum percentage

increases in Atkinson welfare since 1970, and 3) the minimum and maximum percentage

increases in Atkinson welfare as a percentage of what they would have potentially been if

all incomes grew at the same rate (uniform GDP growth). Thus, the lower bound in part 3)

is informative as to how much less welfare growth there is because of the fact that growth

in GDP per capita is distributed unequally. Note that we can reject the hypothesis that

inequality rose if and only if the lower bound in part 3) is greater than 100%; welfare grew

faster than did GDP because inequality shrank.

I present the time series of world welfare for implied risk aversion 
 = 0:5 and 
 = 0:9
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in Figure IIIa) For both indices of risk aversion considered, world welfare rose between 1970

and 2006. For 
 = 0:5, we can also reach the conclusion that world welfare rose between

1990 and 2006, and even between 2000 and 2006. These are very important �ndings, since

they establish that for plausible levels of risk aversion, (and even for relatively high ones,

such as 
 = 0:9; for which fully nonparametric bounds may be expected to be di¢ cult to

construct), the only series consistent with the data imply that even accounting for its uneven

distribution, growth was su¢ ciently high relative to any increase in inequality that overall

welfare rose. This conclusion is also intuitive given the more primitive facts of the dataset

we use: if per capita GDP grew by nearly a factor of two, and between-country inequality

fell substantially, and within-country inequality as measured by the Gini varied very little,

the only way that welfare could have fallen was if movements in the Gini coe¢ cient and in

the fractile shares were unrelated to movements in the Atkinson index. No less important is

it to note by how much welfare rose: Table I indicates that for 
 = 0:5, welfare rose by at

least 88% between 1970 and 2006.

From the time series of inequality in Figure IIIb), I must remain agnostic about

the direction of world inequality: it is impossible to tell whether inequality rose or fell

without additional assumptions. While I can almost reject the hypothesis that inequality

rose according to 
 = 0:5 (the relative risk premium of the income distribution could have,

at most, risen from 0.396 to 0.414), it is obvious by inspection that for 
 = 0:9, the data

is consistent with many possible rising or falling time paths of inequality. In particular,

this �nding indicates that the large drop in between-country inequality could have been

more than overridden by a rise in within-country inequality. However, these bounds also

display the relatively limited feasible variation in inequality. Table I shows that for the

baseline speci�cation, rising inequality could have eroded at most 7% of the welfare bene�ts

of GDP growth, and for a risk aversion coe¢ cient even as high as 
 = 0:9, the largest possible

inequality increase could have decreased the growth rate of welfare relative to uniform growth

by at most 31%.

The bene�t of using uniform bounds is that this failure to reject should not be
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interpreted as a "null result," but rather as a criticism of the (amount and presentation of

the) data. It indicates that, at least without stronger assumptions on the form and evolution

of inequality within countries, it is impossible to tell whether inequality rose or fell. If we

wish to reach a conclusion, what is required is more surveys, more �nely presented. In the

robustness checks, I will show that the failure to reject comes largely from the paucity of

information in the surveys (from the width of the bounds when inequality data is given)

rather than from the conservatism of my imputation assumptions.

5.4 Gain from �ne bounds

It is useful to see how much we gain by basing our bounds on additional data, and

how much we gain by using sharp rather than loose bounds. Figure IVa) presents welfare

estimates for 
 = 0:5 using four methods: 1) crude bounds based on fractiles, 2) sharp

bounds based on fractiles, 3) sharp bounds based on the Gini, and 4) bounds (crude upper

bound and sharp lower bound) based on both the Gini and fractiles. We see that 1) including

the Gini coe¢ cient as well as the fractile shares in estimating the bounds decreases the width

of the intervals (more in the earlier than in the later part of the sample because there are

substantially more surveys with unit records in the later part of the sample), 2) sharpening

the fractile-based bounds does not appreciably decrease the width of the intervals, and 3)

while the lower bound on welfare based on the Gini is very poor, the upper bound on welfare

based on the Gini is quite good, and can be superior to the upper bound based on fractile

shares (which, in practice, tend to be decile shares). In particular, the upper bounds on

welfare are all extremely close together, which is consistent with the idea that there is little

gain in further improving the upper bound, so our omission of the sharp upper bound with

the Gini and fractile shares is not a large loss.

It is reasonable to ask whether there is anything that we gain from using �ner bounds.

From Figure IVa) , we see that if we could base our bounds only on the Gini coe¢ cient, we

could not reject the hypothesis that welfare fell between 2000 and 2006 even for 
 = 0:5.

We can also deduce from Figures IIIb) and IVa) that if we did not have a formula for
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calculating the upper bound on inequality given both the Gini and fractile shares, the data

would be consistent with a large, rather than a trivial, rise in inequality for risk aversion

coe¢ cient 
 = 0:5; and would have been consistent with a rise in inequality for risk aversion

coe¢ cients much lower than 0:5. However, at least within our baseline results, there are no

other immediately obvious hypotheses that critically depend on the use of the �ner bounds.

The power of the �ner bounds can, however, be seen if we turn to the analysis of the

�ne structure of the welfare time series. It is of interest to ask what we can say about the

rate of welfare growth over the period 1970-2006. Given upper and lower bounds for welfare,

bounds for welfare growth can be easily constructed without losing sharpness by computing

the upper bound of growth as the growth between the lower bound at date 1 and the upper

bound at date 2, and vice versa for the lower bound of growth. It is easy to see from Figure

IVa) that the width of the bounds exceeds the typical 1-year growth rate, so it is useful to

compute average growth rates over long periods, such as 10 years; however, this procedure

prevents us from talking about growth trends at the ends of the sample period.14. Figure

IVb) shows bounds on the growth rate using fractiles only, and using fractiles together with

the Gini coe¢ cient for averaging periods of 10 years. It is obvious that using the �ner bounds

connotes an important improvement; we can reject the hypothesis that average annual growth

rates in any 10-year period in the sample were negative using the �ne bounds, but not using

the fractile-based bounds. Moreover, the width of the bounds shrinks considerably when the

bounds are �ner, and we can make some nontrivial statements about the level of growth in

di¤erent time periods with the �ne bounds, such as the average annual growth rates being

bounded away from zero. Unfortunately, we cannot make any statements about welfare

growth accelerating or decelerating during the sample period, a question of obviously great

interest.
14This limitation may actually be appropriate in practice, since the growth dynamics at the ends of the sample period may

be products of extrapolation. However, it is clear we can have too much of a good thing, as with 20-year average growth rates,
we lose more than half of our 36-year long sample period.
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5.5 Higher Atkinson Parameters

As mentioned in section 2, it is impossible to construct nontrivial bounds for Atkinson

welfare indices with coe¢ cient greater than unity because the lower bound is zero whenever

a distribution of income with positive mass at zero is allowed. However, bounds for higher

degree Atkinson indices can be constructed under the assumption of a minimum income.

A �exible procedure for selecting such a minimum income is to assume that the minimum

income is a �xed fraction of the lowest fractile mean, which allows poorer countries to

have lower minimum incomes than richer countries. Figures Va) and Vb) show plots for

Atkinson welfare indices with 
 = 1:25 and 
 = 1:5 under the assumption that the minimum

income is one-�fth of the mean income of the lowest fractile. Since the magnitudes of

the higher-parameter Atkinson indices are much lower than the magnitude of the 
 = 0:5

Atkinson index, the series are plotted at di¤erent scales, but the growth dynamics of the

higher-parameter Atkinson indices are clear. Even for these higher values of the Atkinson

parameter, welfare rises unambiguously, although we see from the �gures and from Table I

that the bounds are much wider and are compatible with much smaller rises in welfare. For


 = 1:25, rising inequality could have destroyed 31% of potential welfare growth, and for


 = 1:5, it could have eroded as much as 69%:

6 Robustness Checks

The formulae for the uniform bounds given fractile shares and the Gini coe¢ cient are

derived analytically, and hence need to be checked for robustness only to the relaxing the

assumptions underlying them. The substantive assumptions underlying the baseline results

presented in the previous sections are as follows: 1) the GDP data in the PWT and the

inequality data in the WIID selected as described in fact do describe accurately the true

GDP and inequality measures of the countries in question, and 2) the interpolation and

extrapolation method assumed in section 4 is a good approximation for the actual behavior

of the time series in question. These assumptions will be scrutinized in what follows.
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6.1 Sampling error in the fractile shares and the Gini coe¢ cient

The derivations in section 3 took the fractile shares and Gini coe¢ cient to be known

without error; in fact, these quantities are survey estimates that depend on the sample

collected, so there may be a nonzero probability that the true values of the Atkinson index

are not contained in the bounds constructed from the empirical estimates. The idea that

sharp bounds based on empirical estimates may fail to contain the population value for

which they have been constructed is explored in McDonald and Ransom (1981) and is a

serious problem. In the context of the paper, there is reason to believe that this problem

is small, since the WIID provides information on the sample sizes of most of the listed

household surveys, and these sample sizes are very large, with median sample size equal

to 23,900. However, since the surveys are nonrandom samples, and in particular, probably

have high degrees of clustering, the variances of the resulting estimates are higher than the

corresponding variances would have been had the surveys been simple random samples.

I perform a robustness check for sampling error by the following procedure:

1. I assume all underlying country distributions of income to be lognormal with inequality

parameter implied by the Gini coe¢ cient.

2. I draw 100 simple random samples from each survey with sample size equal to 1/10th of

the listed sample size in order to control conservatively for the variance-in�ating e¤ect

of nonrandom sampling procedures.

3. I compute the decile share-based bounds (using the crude closed-form version of the

bound for the minimum welfare) for each draw.

4. I compute sampling-error-adjusted con�dence bounds for welfare as the upper bound

plus 2 standard deviations, and the lower bound minus 2 standard deviations.

5. I aggregate these bounds to obtain bounds for the entire world using the baseline im-

putation assumptions.
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This procedure is very conservative, as sampling error is likely to be independent (or very

weakly correlated) across surveys, so aggregating all the lower and upper bounds considers

the very unlikely case that sampling error (as opposed to systematic error) consistently was

in a downward (or upward) direction for all surveys in the dataset. Hence, the resulting

con�dence bounds contain the true value of world welfare in a given year with a probability

far higher than 95%. The graph of the resulting bounds, along with the bounds based on the

lognormal fractiles without sampling error, are presented in Figure VIa). It is obvious that

adding sampling error, even in a highly conservative fashion, does not substantially a¤ect

the bounds.

6.2 More conservative interpolation / extrapolation

One of the substantive assumptions that had to be made in the aggregation of country

estimates to get the world welfare estimates concerned the imputation of bounds for country-

years without any inequality data. Our baseline assumption is that the survey data gives

us all the peaks and the troughs of the time series, so observations for the missing country-

years should be contained between the outer envelope of the bounds of the closest available

observations. An (extreme) alternative methodology would be to compute the highest upper

bound and lowest lower bound observed in the data for the given country, and assume that

inequality in this country never violates these bounds. Hence, we relax our assumption that

all the peaks and troughs of the inequality series are observed to the assumption that we

observe the highest peak and the lowest trough. Extrapolation is still performed linearly, so

as to allow inequality to grow to values not observed in the sample.

I present the resulting bounds for welfare along with the baseline bounds for 
 = 0:5 in

Figure VIb) and Table I. It is clear that we can reject the hypothesis that welfare did not

grow in favor of the hypothesis that it grew for most periods of interest, and over the course

of the sampling period. The bounds do widen, and we see that rising inequality could have

destroyed as much as 41% of potential welfare growth (although the bounds are compatible

with inequality falling as well).
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One may argue that I fail to reject the hypothesis that world inequality rose because my

interpolation scheme is too conservative: in particular, 1) the bounds for countries without

surveys are too wide since they capture uncertainty in the level of inequality in the country

as well as uncertainty coming from functional form, 2) the outer envelope interpolation

is too cautious, since inequality tends to rise smoothly, 3) the linear extrapolation is too

conservative as it in�ates uncertainty due to functional form. In particular, Sala-i-Martin

(2006) and Pinkovskiy and Sala-i-Martin (2009) impute inequality for countries with no

survey data using regional average inequality, while Milanovic (2002) and Chen and Ravallion

(2001) (implicitly) interpolate and extrapolate horizontally by using surveys from nearby

years to stand in for surveys in years of interest. Therefore, Figure VIII) considers what

happens to the baseline inequality series (
 = 0:5) when these assumptions are relaxed. One

modi�cation replaces the bounds for countries without data by the average (rather than

the envelope) of the bounds for countries in the same region with data, and the second

modi�cation also interpolates the bounds within the core (rather than taking their envelope)

and uses horizontal extrapolation of the bounds rather than linear extrapolation. For the

second modi�cation, it is possible to barely reject the hypothesis that world inequality rose

(the lower bound in 1970 is 0.4006 and the upper bound in 2006 is 0.3997), but this is entirely

a result of using horizontal as opposed to linear extrapolation. Hence, in order to understand

whether inequality has risen or fallen since 1970, it is necessary to collect more recent survey

data (some of which has probably not been processed in the case of recent surveys) in �ner

categorizations.

6.3 Alternative inequality data: di¤erent procedures for choosing surveys15

As noted by, e.g. Atkinson and Brandolini (2001), in using the DS database or the

WIID, it is crucial to select comparable surveys so as to avoid comparing the inequality of

conceptually di¤erent distributions. While it is di¢ cult to write a formula that can combine

the various considerations that go into determining which surveys to select, the methodology
15 In results not reported, I also consider replacing the WIID survey data with data on Gini coe¢ cients from Galbraith and

Kum (1999). The results are essentially identical to my baseline Gini results.
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for selecting surveys that I have presented in section 4 can be justly criticized for being

heuristic and di¢ cult to replicate. Therefore, I provide two alternative methodologies; one

that seeks to ensure comparability of the surveys selected within each country at the cost of

a substantial loss of coverage, and another that attempts to control for the range of sampling

and nonsampling error in the computation of the Gini coe¢ cient at the cost of not being

able to use fractile shares to reduce the width of the distribution-free bounds.

The �rst (hereafter homogeneous) methodology entails selecting the surveygroup

with fractile shares with the largest number of surveys within the sample period for each

country, and taking surveys for that country only from the selected surveygroup. Hence, all

surveys for a given country must be identical along all dimensions that are held �xed within

a surveygroup: source, underlying population, unit of analysis and equivalence scale, and

income concept. However, this methodology does not attempt to ensure homogeneity across

countries, and recognizes that while within-country trends in inequality will be measured

using comparable data, the levels of inequality in di¤erent countries will not necessarily be

comparable. (Trying to ensure homogeneity across countries by further excluding surveys

from the WIID would do violence to the procedures, as either China, which has almost exclu-

sively income surveys, or the Indian subcontinent, which has almost exclusively consumption

surveys, would be excluded). From Figure IXa), we see that this methodology drastically

restricts coverage; only for the 1980s is more than 70% of the world covered even indirectly

(in the core), and (not shown) the inequality series for China stops in 1992.

The second methodology (hereafter the extreme Ginis methodology) involves ignoring

the di¤erences between all surveys in terms of income concept and unit of analysis (but

acknowledging the di¤erences in terms of the underlying population), and for each country-

year, taking as the �nal bounds the outer envelope of the bounds based only on the Gini

coe¢ cient for each Gini coe¢ cient presented in the WIID for that country-year. The extreme

Ginis methodology conjectures that all the income concepts and equivalence scales in the

surveys are imperfectly implemented, but the range of resulting estimates captures the Gini

coe¢ cient that would result from an ideal implementation of a consistent income concept and
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equivalence scale. The average standard deviation of the Gini estimates is 0.042, which far

exceeds the time standard deviation of the Gini coe¢ cient within a given surveygroup across

multiple years (whose mean and median are approximately 0.02). Hence, it is plausible that,

given the wide range of the Gini estimates, this range contains the true value of the Gini.

Obviously, this methodology expands the coverage of the surveys: Figure IXb) shows that

more than 90% of the world population are in the core until 2000, and more than 80% until

2003, while about 60% are directly covered by surveys.

Figure VIc) shows bounds for world welfare using the homogeneous methodology,

while Figure VId) shows the nonparametric bounds for world welfare for 
 = 0:5 for both

the baseline estimates and the extreme Gini estimates. Since the extreme Ginis methodology

can use only Gini-based bounds, I use the Gini-based baseline bounds for comparison. These

estimates are remarkably close to the baseline estimates, and yield the same implications;

for the homogeneous survey selection it is possible to conclude that world welfare rose for

every decade for 
 = 0:5, and we see from Table I that any rise in inequality could have

destroyed no more than 17% of potential welfare growth. The fact that the extreme Gini

estimates largely coincide with the baseline estimates is not unexpected when one considers

the great width of the Gini bounds, which dwarfs most empirically plausible ranges of the

Gini coe¢ cient. 16

6.4 Alternative GDP data: Treatment of Chinese GDP

In 2007, in the wake of concluding a series of price surveys in the developing world, the

World Bank revised the prices it used in its purchasing-power-parity adjustments, which led

to major changes in its GDP series in the World Development Indicators, in particular, the

lowering of Chinese and Indian GDP by 40% and 35% respectively. This development has

been reviewed in the popular press (The Economist: Nov. 29, 2007; Dec. 19, 2007). The

revision has been criticized, in particular on the grounds that it considered prices in urban

China only. PennWorld Tables version 7 fully incorporates these PPP revisions, but, mindful
16 In fact, the extreme Gini bounds are sometimes narrower than the baseline bounds. This is because using Gini coe¢ cients

increases the number of country-years with surveys, thus replacing very conservative imputation procedures with much narrower
nonparametric bounds for these country-years.
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of the controversy of the new Chinese PPP estimates, reports two estimates for China: one

based exclusively on Chinese national income accounts (version 1) and the 2005 ICP price

survey for PPP adjustment, and the other one including some further PPP adjustments to

compensate for the potentially nonrepresentative geographical character of the Chinese price

surveys in the 2005 ICP (version 2). In my analysis, I have used the version 2 China series

from the Penn World Tables because it delivers more conservative results. Figure VIe) shows

bounds for world welfare using the version 1 series for Chinese GDP. We see from Table I

that using the version 1 series actually strengthens my conclusion: world welfare rises by at

least 101% from 1970 to 2006, and in particular, rises by at least 107% of uniform growth,

suggesting that if we use the version 1 series, we could actually reject the hypothesis that

inequality rose. However, such a rejection would not be robust to alternative extrapolation

and interpolation methodologies, so I interpret this result cautiously.

6.5 Alternative GDP data: World Bank GDP

To check for robustness to the source of GDP more radically, I re-estimate world welfare

and inequality measures using World Bank estimates of GDP from the World Development

Indicators (hereafter WB). Figure VIf) presents the WB welfare estimates for 
 = 0:5 along

the baseline results. The bounds are extremely close to each other. One may conjecture

that the PWT GDP series might do a better job of describing GDP earlier in the sample

period while the WB GDP should do a better job later in the sample period, which would

mean that welfare rose by less than either set of bounds would imply separately. We see

that even taking the outer envelope of the nonparametric bounds for PWT GDP and WB

GDP, we can conclude that welfare rose over the sample period, and we can establish more

restrictive hypotheses as well (e.g. welfare rose from 1990 to 2006). Hence the WB series

does not substantially change our results.
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6.6 Alternative GDP data: World Bank Survey Means

As discussed in Section 4.1, there is disagreement in the literature on whether to combine

national accounts GDP with survey data on inequality, or to use the survey mean as a

measure of the mean of the income distribution. In particular, Milanovic (2005) and Chen

and Ravallion (2001) use survey means in their calculations of world poverty and inequality.

In this paper, I have used national accounts data in order to 1) remain comparable to most

of the literature on the evolution of the world distribution of income and to the growth

literature, and 2) avoid problems relating to the unavailability of survey means for many

countries and years, given that the coverage of national accounts is nearly universal. In this

section, I investigate the robustness of my results to the use of survey means in place of

national accounts GDP.

I use the data on survey means from the World Bank�s poverty calculator, PovCal-

Net, which is the most complete and consistent panel of survey means that I am aware of.

However, even this panel does not match the nearly complete coverage of the Penn World

Tables. For 79 major countries (including China, India, Nigeria, Argentina, Mexico and the

former Soviet Union) I can obtain survey mean data from 1990 to 2004, extrapolating and

interpolating the survey means using the methods of section 4.4. I use the World Bank

national accounts data to construct a comparison sample of the same 79 countries during

the same time period. There are substantial di¤erences between the national accounts and

the survey means, which typically result in lower income and slower growth in the survey

means than in the national accounts. For example, China�s annual rate of growth is more

than 1 percentage point smaller if computed using survey means than using national ac-

counts. There are many explanations for these di¤erences (Deaton 2005, 2010), such as

intentional and unintentional survey misreporting, problems in monetizing in-kind income,

and inappropriate national accounting.

Figure VII) presents the sharp upper and lower bounds for the welfare series com-

puted for the 79-country composite using 1) the survey means, and 2) Penn World Table

national accounts data for the period 1990-2004. The increase and the growth rate of welfare
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in this sample is much lower than for the baseline because the sample covers a much shorter

period of time � in fact, the average annualized growth rate in the 79-country sample is

1.6% per year, while the average annualized growth rate in the baseline sample is 1.77% a

year. It is clear that whether one chooses to use national accounts or survey means, world

welfare rises unambiguously during this period, and, in fact, would rise unambiguously if we

restricted our analysis to some subperiods of this data, such as 1990-2000. Table I shows

the minimum absolute rise in welfare and the minimum growth rates for these welfare series.

In particular, it is clear that in this subsample of countries, and even using survey means,

we can actually reject the hypothesis that inequality rose within the subsample of countries

because the lower bound of the ratio of welfare growth to per capita GDP growth exceeds

100%.

6.7 Accounting for nonresponse and nonrepresentativeness

A major problem with the survey data is that the people who respond to the

surveys might systematically di¤er from people who do not. This concern is raised in Deaton

(2005), who argues that falling response rates to many household surveys, and the large

discrepancy between the national accounts means and the survey means, are problems of the

�rst magnitude for the validity of the surveys. A particularly worrisome problem is that rich

people in developing countries are systematically not covered by surveys (e.g. they live in

gated communities to which surveyors have no access, or they openly lie to the surveyors for

fear that their truthful answers might be given to the government). Atkinson, Piketty and

Saez (2009) make the general case for the importance of inequality at the very top of the

distribution in calculations of global inequality, and Banerjee and Piketty (2005) argue that

failure of the Indian NSS to cover the top of the Indian income distribution may account for

as much as 20%-40% of the much-documented growing gap between Indian national accounts

and survey means in the NSS.

Given that the Atkinson welfare measure is decomposable, a simple method to gen-

erate sharp bounds given systematic nonresponse is to divide the population into two parts,
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respondents and nonrespondents, and combine the bounds for respondents with worst-case

assumptions about nonrespondents. Speci�cally, suppose that the survey represents a frac-

tion � of the population, who have mean income �c. Note that � is bounded below by the

response rate, but may in fact be larger than the response rate if it is possible to adjust for

nonresponse within the survey. Let z := �c=�, and let ALB (
) and AUB (
) be the upper

and lower bound for the Atkinson inequality index computed on the basis of the survey

data without adjusting for nonrepresentativeness. Then, the sharp nonrepresentativeness-

adjusted bounds for A (
) are as follows:

lower bound: ÂLB (1� �) = 1�
�
� (z)� (1� ALB (1� �))� + (1� �)

�
1� �z
1� �

���1=�

upper bound: ÂUB (1� �) = 1� �1=�z (1� AUB (1� �))

with the restriction that �z < 1. This restriction always holds if z < 1. It is apparent

that ÂLB (1� �) increases in (�; z; �), and ÂUB (1� �) decreases in these variables, so as

surveys become less representative (� falls) and as survey mean income falls further below

the national accounts GDP (z falls), the con�dence intervals widen. Therefore, if we want

to make the broader assumption that z � �z and � � �� for some �z and ��, we just compute

the upper bound, and set the lower bound at ÂLB (1� �) = ALB (1� �).

The variable � has the intuitive meaning of the response rate. The variable z is the

ratio of the mean income of respondents to true mean income. If � is equal to unity, and

z < 1, then z should be interpreted as the fraction of national income accounted for by the

survey because 1 � z is the fraction of income owned by the small number of unsurveyed

super-rich individuals.

Unfortunately, the WIID does not contain data on the response rates to the surveys

(either in the database itself or in the documentation), and reports mean survey incomes very

sporadically (only one survey mean is ever reported for China). Therefore, for the purposes of
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this robustness check, I will assume common values � and z for the entire world, and compute

bounds on their basis. Such bounds will, in a sense, be more informative, as these bounds

will be valid for all values of � and z higher than the values chosen, whereas attempting to

retrieve z from the WIID would introduce additional sources of error. I let � take on values in

f0:80; 0:90; 1g, following Korinek et. al. (2003), who give a reasonable range for nonresponse

of 10%-30%. I let z take on values in f0:75; 0:875; 1g following Banerjee and Piketty (2005),

who argue that the top 1% of the Indian income distribution hold approximately 12% of

Indian national income, and following Atkinson, Piketty and Saez (2009) who document

that the top 1% of the US income distribution hold a share of national income approaching

25%.

First, suppose that nonresponse is negligible (� = 1) and is coming from a small

group of super-rich individuals who are not captured by the surveys. Figure Xa) plots the

welfare bounds for the baseline case, for z = 0:875 and for z = 0:75. For either value of z,

we can be con�dent that welfare rose. We can barely fail to reject that welfare fell for the

outer envelope of all the bounds presented. Thus, under the assumption that the discrepancy

between survey mean income and national accounts income can be explained by part of the

growth enriching a very small and very rich minority, with full response otherwise, we can

conclude that welfare rose even if the fraction of national income held by this minority rose,

for instance, from 0 to 25% over the sample period. However, the bounds are consistent with

rising measured inequality and a rising share of income held by the super-rich substantially

eroding welfare gains relative to uniform growth: Table I shows that if z = 0:875, the realized

welfare growth may have been only 68% of per capita GDP growth, and if z = 0:75, the

realized welfare growth may have been only 43% of per capita GDP growth. These are

of course much more demanding sets of bounds because they try to not only capture the

uncertainty in the population measured by surveys, but also attempt to account for factors

changing the composition and size of this population.

We now consider the more general case when only � of the population is covered by

any household survey, and its mean income is z of the true mean income. This situation
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is very general; in particular, there are no assumptions at all on exactly how nonrandom

the sampling is, and how large or small inequality is in the fraction of the population not

surveyed. However, if survey means are low and nonresponse is high, the implication is

that an increasingly large and economically signi�cant part of the population is not being

covered, which leads to wide nonparametric bounds and an inability to reach any conclusions

without further assumptions. Figure Xb) presents the baseline bounds as well as the bounds

for (�; z) = (0:9; 0:875) ; (�; z) = (0:9; 0:75) and (�; z) = (0:8; 0:875). It is clear that we are

con�dent for each set of the bounds that world welfare rose, but only barely so in some cases.

In particular, setting the nonresponse rate to 30% (� = 0:7), which is deemed possible by

Korinek et al. (2003), would prevent us from rejecting the hypothesis that welfare fell. While

we can be con�dent that welfare rose if the nonresponse rate is su¢ ciently small and if the

mean income of respondents is su¢ ciently close to total mean income, we cannot be con�dent

that welfare rose essentially for any higher nonresponse rates, which might nevertheless be

plausible.

7 Conclusion

In this paper, I presented formulae for sharp, nonparametric bounds for typical measures

of inequality and welfare that can be computed from standard summary statistics of income

distributions that are routinely provided to the public. These bounds are valid independently

of the functional form of the underlying distribution of income. Hence, these bounds illustrate

exactly the extent of knowledge about the inequality measures in question that we gain from

our data; they render moot any questions about appropriate assumptions for the form of

within-country or within-fractile income distributions and they help focus the debate over

whether we have seen improvement in living standards onto issues of the validity of the data

from which they were computed.

Using national accounts GDP estimates and WIID survey data, the nonparametric

bounds imply that for any series compatible with these data, welfare must have risen, and

risen substantially, but it is not possible to conclude whether world inequality rose or fell.
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This claim is supported through sensitivity analysis over the exact use of the WIID data

as well as over the methodology used to compute the national accounts GDP estimates.

In particular, it appears reasonable to conclude that notwithstanding the incomparability

problems of surveys in the WIID, and notwithstanding recent issues in adjusting national

accounts for PPP, welfare has risen over the period 1970-2006, as well as over most shorter

periods of interest within this time. It is also unlikely that sampling error or vagueness in

the income concepts used in administering the surveys could change this result, so long as

surveys are fully representative of whatever income concept they are measuring. For most

of my robustness checks, I can rule out substantial rises in inequality, but if I use extremely

conservative interpolation procedures, or if I attempt to account for the possible deterioration

of survey representativeness of the population, substantial rises in inequality that destroy

around 50% of potential welfare growth are compatible with the estimated bounds.

Hence, the major challenge that remains to the claim that welfare rose consistently

over the period 1970-2006 is the concern that the WIID surveys are signi�cantly nonrepre-

sentative of the underlying population because of selective nonresponse. While under some

assumptions, this concern does not overturn our conclusion, for some possible estimates of the

extent of nonresponse, we obtain that further assumptions are needed to conclude anything

about the path of welfare during the sample period. It is therefore of great importance to

accurately gauge the reliability of the survey data we are using in order to reach conclusions

about what happened to welfare in recent times.
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A Proofs of Various Propositions

A.1 Proof of Lemma 1 (3-2 Lemma):

Suppose that the increasing and convex curve L (p) on [0; p�], where p� > 1, is de�ned by three line seg-

ments, where the �rst segment is de�ned by q = mp, and the third segment is de�ned by q = zp� (z �m),
where 0 � m < z � 1: Let the second segment lie between the point (�p;m�p) on the �rst line and�
1 + �q�m

z ; �q
�
on the third line, so its equation is M (p) := q = m�p + z(�q�m�p)

(z�m)+(�q�z�p) (p� �p) : Therefore,

L (p) = max
�
mp;m�p+ z(�q�m�p)

(z�m)+(�q�z�p) (p� �p) ; zp� (z �m)
�
on [0; p�]. Let the value of the third line seg-

ment at p� be de�ned as rp�:

Then, the Gini constraint isZ p�

0

L (p) dp = K1 +K2 [(�q �m) (1� �p)] = �G

for some K1 and K2 that are constants in �p and �q, so the Gini constraint is equivalent to �q = S
1��p +m, for

some S 2 [0;1]. Note that �p is then constrained to lie in the interval [0; ~p] for some ~p < 1, since �q � rp�

The objective is given by

O =

Z p�

0

(L0 (p))
�
dp = �pm� + z�(1��) (�q �m�p)� (z (1� �p) + �q �m)1�� + z�

�
K � �q �m

z

�
:

If and only if it can be shown that O is minimized by some �p 2 f0; ~pg, or that the problem of minimizing

O in �p subject to the Gini constraint yields a corner solution, then the lemma is proved; since then the line

M (p) dominates either the �rst or the third line on [0; p�]. Hence, the lemma is equivalent to the problem

min
p2[~p;1]

�
(1� p)m� + z�(1��)

�
S

p

���
1 +

z

S
p2
�� �

1 +
m

S
p2
�1��

� 1
��

having a corner solution (where we replace p = 1� �p). Now, let w = p2=S 2 (0;1) : Then, we obtain.
Dp = z

�
h�

1+mw
1+zw

�� �
2
�
(1� �) + �mz

1+zw
1+mw

�
� 1
�
+ 1

zw

�
1�

�
1+mw
1+zw

���
�
�
m
z

��i
; and

D2
p = � 2

p

h
Dp + z

�
��

m
z

�� � � 1+mw1+zw

�� �
1� 1

z

�
�(z�m)
1+mw

��
1 + 2(1��)(z�m)w

(1+mw)(1+zw)

���i
A necessary and su¢ cient condition for a corner solution to the optimization problem is that Dp = 0)

D2
p < 0, or that

�m
z

��
=

�
1 +mw

1 + zw

���
2

�
(1� �) + �m

z

1 + zw

1 +mw

�
� 1
�
+
1

zw

�
1�

�
1 +mw

1 + zw

���
)

�m
z

��
�
�
1 +mw

1 + zw

���
1� 1

z

�
� (z �m)
1 +mw

��
1 +

2 (1� �) (z �m)w
(1 +mw) (1 + zw)

��
which is trivially true.

Hence, the minimum of the problem is achieved at the boundary, and the optimizing segment of the curve

has only one interior corner rather than two. It is obvious by induction that for any piecewise linear curve

with z corners between two consecutive constrained points, there exists another piecewise linear curve that
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has only one corner between these points, satis�es the constraints of the original curve, and attains a weakly

smaller value of the program.

In particular, for any piecewise linear Lorenz curve L with �nitely many kinks, there exists a sequence�
a�i ; a

+
i

	k
i=1

such that a�i � mi � a+i � a
�
i+1 8i = 1; :::; k, and the Lorenz curve given by

L̂ = max
i=1;:::;k

�
max

�
a�i (p� pi) + qi; a

+
i (p� pi+1) + qi+1

		
satis�es the constraints and attains a weakly smaller value of the objective than does the curve L:

A.2 Proof of Proposition 2:

The problem is

inf
L2L

Z 1

0

(L0 (p))
�
dp st. 1) �G =

Z 1

0

L (p) dp, 2) 8i = 1; ::; k; L (pi) = qi

Since the functional
R 1
0
(L0 (p))

�
dp is bounded below by zero, it must be the case that S := inf

L2L

R 1
0
(L0 (p))

�
dp 2

R. Moreover, there must be a sequence fLig 2 Lc such that lim
i!1

R 1
0
(L0i (p))

�
dp = S. Now, since the function

L0i (p) is Riemann integrable, it must be the case that for any ", and for any i, there exists ~Li 2 Lc such that
~Li is piecewise linear with �nitely many corners, and

���R 10 (L0i (p))� dp� R 10 �~L0i (p)�� dp��� � ":17 Hence, let

f"ig 2 R be a sequence such that lim
i!1

"i = 0, and let
n
~Li

o
be a sequence of piecewise linear functions with

�nitely many corners such that
���R 10 (L0i (p))� dp� R 10 �~L0i (p)�� dp��� � "i: Then, limi!1

R 1
0

�
~L0i (p)

��
dp = S:

Now, by Lemma 1, for every piecewise linear Lorenz curve ~Li 2 Lc, there exists a piecewise linear Lorenz
curve L̂ (;ai) 2 Lc given by

L̂ (p;ai) = max
s=1;:::;k

�
max

�
a�i;s (p� ps) + qs; a

+
i;s (p� ps+1) + qs+1

		
for some ai =

�
a�i;s; a

+
i;s

	k
s=1
such that a�i;s � ms � a+i;s � a

�
i;s+1, such that

R 1
0

�
L̂0 (p;ai)

��
dp �

R 1
0

�
~L0i (p)

��
dp.

Hence, lim
i!1

R 1
0

�
L̂0 (p;ai)

��
dp � S; and by de�nition of in�mum, lim

i!1

R 1
0

�
L̂0 (p;ai)

��
dp = S: Now, let the

set A be the set of all ai satisfying the restriction a
�
i;s � ms � a+i;s � a�i;s+1 8i = 1; :::; k, and note that

this is a closed subset of the compact set �R2k+ , and is therefore compact. Hence, the sequence faig
1
i=1 has a

convergent subsequence,
�
ai(k)

	1
k=1

, which converges to a limit a. Finally, observe that by the de�nition of

L̂ (p;ai), the integral
R 1
0

�
L̂0 (p;ai)

��
dp is continuous in ai, so

S = lim
i!1

R 1
0

�
L̂0 (p;ai)

��
dp = lim

k!1

R 1
0

�
L̂0
�
p;ai(k)

���
dp =

R 1
0

�
L̂0 (p;a)

��
dp

and L (p;a) is a Lorenz curve that attains the in�mum value S: Since L (p;a) is de�ned by 2k parameters,

its coe¢ cients
�
a�i ; a

+
i

	k
i=1

can be solved for using standard numerical methods.

17 I am very grateful to Paolo Siconol� for help with this part of the proof.
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A.3 Proof of Proposition 3:

The 3-2 Lemma implies that if there is only a Gini constraint, the Atkinson is maximized by a Lorenz curve

L (p) with only one interior corner (p; q) :

The Gini of this Lorenz curve is given by G = p � q, and the Atkinson is given by 1 � q�p1�� �
(1� q)� (1� p)1��, so the parameters p and q of the optimal curve are given by

�p = arg min
p2[G;1]

n
(p�G)� p1�� + (1� p+G)� (1� p)1��

o
and �q = p�G. The second derivative of the minimand is given by

D2
p = �� (1� �) �q��1�p��

��
�q

�p
+
�p

�q
� 2
�
+

�
1� �q
1� �p +

1� �p
1� �q � 2

��
which is negative, so any minimum must be a corner solution, and the maximized Atkinson is given by

max
�
G; 1� (1�G)

1��
�

�
:
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Table I: Bounds on Increase and Growth of World Welfare

Di¤. Di¤. Growth Growth Growth, Growth,

Lower Upper Lower Upper Lower Upper

Bound Bound Bound Bound Bound Bound

Relative Relative
to Uniform to Uniform

Pct Pct Pct Pct

IIIa) Baseline 2626 3361 88 127 93 134

IIIa) Gamma=0.9 1257 3234 65 330 69 350

IVa) Gini Bounds Only 1949 3937 65 190 69 201

IVa) Fractile Bounds, Sharp 2501 3579 83 147 88 156

IVa) Fractile Bounds, Crude 2484 3623 82 152 87 161

Va) Baseline, lowest income at 2610 3331 87 124 92 131

0.2 of lowest fractile mean

Va) Gamma=1.25, lowest income at 1052 2035 67 167 71 176

0.2 of lowest fractile mean

Vb) Gamma=1.5, lowest income at 382 1585 29 172 31 182

0.2 of lowest fractile mean

VIb) Extreme Interpolation 1731 4011 56 167 59 176

VIc) Homogeneous Survey Choice 2365 3541 78 132 83 140

VId) Maximum Ginis 1510 3760 50 190 53 201

VIf) Alternative PWT Series for China 2804 3507 101 142 107 150

VIf) World Bank GDP 2548 3222 90 128 96 136

VII) Survey Means 187 305 26 47 107 193

VII) PWT GDP for Survey Means sample 780 1171 35 58 143 238

Xa) Super-Rich have <12.5 percent 1910 3695 64 160 68 169

Xa) Super-Rich have <25 percent 1214 4024 40 203 43 215

Xb) <10 percent Nonresponse, 984 4133 33 221 35 234

>87.5% Mean Income Ratio

Xb) <20 percent Nonresponse, 154 4524 5 306 5 324

>75% Mean Income Ratio

Xb) <10 percent Nonresponse, 419 4399 14 275 14 291

>87.5% Mean Income Ratio

48



Note: Table I summarizes the results from all the graphs. The number for every row indicates the graph

from which the relevant bounds are taken. The �rst two columns present bounds on the absolute increase of world

welfare (the certainty equivalent of the income distribution) in dollars. The next two columns present bounds on the

aggregate growth rate of world welfare in percent. The last two columns present bounds on the ratio of the aggregate

growth rate of world welfare to the growth rate of world GDP per capita in percent (so 100 percent would correspond

to welfare growing by as much as GDP per capita, or uniform growth).

The asterisked rows correspond to estimates from Gini-based bounds, which are much wider than the baseline

bounds and should be compared to the series "Gini Based Baseline" rather than to the baseline series.

The variations are:

IIIa) Baseline: PWT 7 GDP, WIID surveys selected by the procedure described in section 4. Microdata used

where available as described in section 4.

For country-years with no survey data: interpolate the bounds as the outer envelope of the bounds of the

adjacent years with survey data;

extrapolate the bounds as the outer envelope of horizontal and linear extrapolation of each bound;

impute bounds for countries with one or no surveys as the outer envelope of the bounds for all countries in the

given region at any time in the sample period.

Bounds based on Gini coe¢ cient and fractile shares for all country-years with survey data. Atkinson parameter


 is 0.5

IIIa) 
=0.9: Same as Baseline, but 
=0.9

IVa) Gini Bounds Only: Same as Baseline, but bounds based on only Gini coe¢ cient.

IVa) Fractile Bounds, Sharp: Same as Baseline, but bounds based on only fractile shares (exact computation)

IVa) Fractile Bounds, Crude: Same as Baseline, but bounds based on only fractile shares (approximate compu-

tation)

Va) Baseline, lowest income at 0.2 of lowest fractile mean: Same as Baseline, but bounds computed under

assumption that the lowest income is 0.2 of the lowest fractile mean.

Va) 
=1.25, lowest income at 0.2 of lowest fractile mean: Same as Baseline, but bounds computed under

assumption that the lowest income is 0.2 of the lowest fractile mean.

Vb) 
=1.5, lowest income at 0.2 of lowest fractile mean: Same as Baseline, but bounds computed under assump-

tion that the lowest income is 0.2 of the lowest fractile mean.

VIb) Extreme Interpolation: Same as Baseline, except for country-years with no survey data, impute the outer

envelope of the bounds over the country over the sample period (if country has more than one survey), or impute the

outer envelope of the bounds over the entire region over the sample period (if country has one or no surveys).

VIc) Homogeneous Survey Choice: Same as Baseline, except choose longest survey series from the same source

49



and with same equivalization and income concept for each country from WIID.

VId) Maximum Ginis: Same as Baseline, except for each country-year with any WIID survey data on a national

scale, use envelope of all Gini-based bounds implied by WIID surveys in country-year.

VIe) Alternative China GDP: Same as Baseline, except use the PWT 7 version 1 GDP series, which bases Chinese

GDP exclusively on the 2005 PPP revision without further adjustments.

VIf) World Bank GDP: Same as Baseline, except use GDP data from World Development Indicators, 2008.

VII) Survey Means: Same as Baseline, except use survey means from the WIID instead of PWT GDP for all

years in which they are available.

VII) PWT GDP for Survey Means sample: Same as Baseline, except restrict to the sample of countries with

survey mean data.

Xa) Super-Rich have <12.5 percent: Assume WIID statistics exclude a set of people of measure zero who own

at most 12.5% of national income respectively.

Xa) Super-Rich have <25 percent: Assume WIID statistics exclude a set of people of measure zero who own at

most 25% of national income respectively.

Xb) <10 percent Nonresponse, >87.5% Mean Income Ratio: Assume WIID statistics exclude nonrespondents,

with respondents�mean income at least 87.5% of the overall mean income but the distribution of this income among

the nonrespondents is arbitrary.

Xb) <20 percent Nonresponse, >87.5% Mean Income Ratio: Assume WIID statistics exclude nonrespondents,

with respondents�mean income at least 87.5% of the overall mean income but the distribution of this income among

the nonrespondents is arbitrary.

Xb) <10 percent Nonresponse, >75% Mean Income Ratio: Assume WIID statistics exclude nonrespondents,

with respondents�mean income at least 75% of the overall mean income but the distribution of this income among

the nonrespondents is arbitrary.
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Note: The source for Figures IIa and IIb is the Penn World Tables 6.2. The source for Figure IIc is the WIID

inequality database. In Figure IIc, fraction covered directly is fraction of world population in given year in countries

with surveys used from WIID. Fraction in core is fraction of world population in given year in countries with at least

one earlier survey and at least one later survey.

52



IIIa)

1000

2000

3000

4000

5000

6000

1970 1980 1990 2000
Year

Baseline, Gamma=0.5 Gamma=0.9

E
qu

al
ly

­D
is

tri
bu

te
d 

In
co

m
e

World Welfare, 1970­2006

IIIb)

.4

.5

.6

.7

.8

1970 1980 1990 2000
Year

Baseline, Gamma=0.5 Gamma=0.9

A
tk

in
so

n 
In

de
x

World Inequality, 1970­2006

Note: Figure IIIa (resp., Figure IIIb) shows the bounds on global Atkinson welfare indices (resp., global Atkinson

inequality indices) for parameters 
 = 0:5 and 
 = 0:9. Each pair of identically formatted lines represents a pair of

bounds. The bounds are sharp given the fractile shares and Gini coe¢ cient for any household survey used, subject

to interpolation, extrapolation and imputation for countries and years without inequality data. Mean incomes to

construct Figure IIIa are taken from the Penn World Tables 6.2.
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Note: Figure IVa presents sharp global Atkinson welfare bounds based on di¤erent statistics from the household

surveys in the WIID database. Note that most of the upper bounds coincide.
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Note: Figure IVb presents sharp bounds on global Atkinson welfare growth based on di¤erent statistics from the

household surveys in the WIID database.
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Note: Figures Va) and Vb) presents sharp global Atkinson welfare bounds for higher values of the parameter 
.

Di¤erent series have their own y-axes because of the di¤erence in scales in the indices.
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Robustness Check: Different Versions of PWT for China
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Note: Figure VIa checks robustness with respect to sampling error by assuming the underlying inequality distri-

butions in WIID are lognormal and comparing the bounds based on the predicted quintile shares with bounds that

incorporate sampling error in the quintile shares. Figure Vb checks for robustness to imputing country and regional

extreme values of the Atkinson welfare index for countries and years with missing data instead of extrapolation.

Figure VIc checks for robustness to constraining all surveys selected from WIID for a given country to come from

the same source. Figure VId checks for robustness to using the envelope of the bounds for the highest and lowest
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Gini coe¢ cient provided for every country-year with inequality data; the baseline series is also based only on Gini

coe¢ cients. Figure VIe checks for robustness to using GDP from the 2008 World Development Indicators. Figure

VIf checks for robustness to using an alternative GDP series for China reported in the Penn World Tables.
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Robustness Check: Survey Means

Note: Figure VII checks robustness for the assumption that survey means provide a better measure for mean

income than do national accounts GDP. I compute bounds for a sample of 79 countries, which includes the largest and

most populous countries in the developing world. The series in red presents bounds computed using survey means

from the World Bank�s PovCalNet website, while the series in blue presents bounds computed using PWT 7 GDP.

The left vertical axis is to be used with the survey means series, while the right vertical axis is to be used with the

national accounts series.
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Note: Figure VIII shows sharp bounds for global Atkinson inequality indices for three di¤erent assumptions

about interpolation, extrapolation and imputation of the country Atkinson inequality index bounds when inequality

data for the given country-years is not available. The three di¤erent assumptions are:

Baseline: interpolate the bounds as the outer envelope of the bounds of the adjacent years with survey data.

Extrapolate the bounds as the outer envelope of horizontal and linear extrapolation of each bound. Impute bounds

for countries with one or no surveys as the outer envelope of the bounds for all countries in the given region at any

time in the sample period.

Regional Means: same as Baseline, but impute upper (lower) bound for countries with one or no surveys as

the average of the upper (lower) bounds for all countries in the given region in that year.

Regional Means plus Interpolated Bounds: same as Regional Means, but for countries with more than one

survey, interpolate each bound linearly and extrapolate the bounds horizontally.
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Note: Figure IXa shows breadth of coverage when selecting only surveys from the same source from the WIID

database; Figure IXb shows breadth of coverage when selecting all surveys with national coverage from WIID. Fraction

covered directly is fraction of world population in given year in countries with surveys used from WIID according to

the selection procedure. Fraction in core is fraction of world population in given year in countries with at least one

earlier survey and at least one later survey selected by the procedure.

59



Xa)

2000

3000

4000

5000

6000

1970 1980 1990 2000 2010
Year

Baseline Super­Rich have <12.5%
Super­Rich have <25%

A
tk

in
so

n(
0.

5)
 E

qu
al

ly
­D

is
tri

bu
te

d 
In

co
m

e Unreported Income of Super­Rich
Robustness Check: Correction for Nonresponse
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Z is the ratio of respondents' mean income to true mean income

Nonrespondents not Random
Robustness Check: Correction for Nonresponse

Note: Figure Xa checks robustness for the assumption that the WIID statistics exclude a set of people of measure

zero who own <12.5% and <25% of GDP respectively. Figure Xb checks robustness for the assumption that the

WIID statistics exclude nonrespondents, and that the ratio between respondents�mean income and true mean income

is Z.
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