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Abstract 

We identify and track over time the factors that make the financial system vulnerable to fire sales 

by constructing an index of aggregate vulnerability. The index starts increasing quickly in 2004, 

before most other major systemic risk measures, and triples by 2008. The fire-sale-specific 

factors of delevering speed and concentration of illiquid assets account for the majority of this 

increase. Individual banks’ contributions to aggregate vulnerability predict other firm-specific 

measures of systemic risk, including SRISK and DCoVaR. The balance sheet-based measures we 

propose are therefore a useful early indicator of when and where vulnerabilities are building up. 
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1 Introduction

Fire-sale spillovers have long been recognized as a potentially important source of con-
tagion in financial markets and therefore are a systemic risk concern.1 The mechanisms,
systemic implications, and welfare costs of fire sales have been abundantly studied in the
theoretical literature.2 In contrast, the empirical literature is understandably thinner, as it is
difficult to conclusively identify fire sales. A fewnotable papers have documented the exis-
tence and severity of fire-sale spillovers for particular episodes or particular asset classes
by exploiting one-time changes in the environment or specific institutional peculiarities
that allow for credible identification strategies.3 From an aggregate welfare perspective,
however, we are ostensibly more concerned with fire sales that affect a large portion of the
financial sector and many different markets simultaneously, especially in states of high
marginal utilities — crises being the paradigmatic example. Clean identification in such
turbulent times is quixotic at best. Even if possible, it would be too late to do much about
them in terms ofwelfare, save for costly liquidity provision or other kinds of interventions.

Amore promising complementary goal is to understand the ex-ante vulnerability of the
financial system to fire sales, especially to those with aggregate consequences. In addition
to circumventing the issue of identification, if detection of vulnerability can be done far
enough in advance, then it may be possible for the affected parties and policymakers to
intervene before the fire sales materialize. Detecting ex-ante vulnerabilities comes with its
own set of challenges.What are the factors thatmake the financial systemvulnerable to fire
sales? Can we track them over time? Is it possible to predict not only when vulnerabilities
develop, but where in the financial sector they lurk?

In this paper, we address these questions by constructing an index of aggregate vul-
nerability to fire sales of large bank holding companies. The index decomposes additively
into each bank’s “systemicness” (its contribution to a fire sale) as well as multiplicatively
into aggregate and cross-sectional factors that drive fire-sale vulnerability. We find that
the aggregate vulnerability index (AV, for short) starts increasing slowly in 2000 and ac-

1Acharya et al. (2009); Brunnermeier (2009); Caballero (2010); Duffie (2010); Shleifer andVishny (2011);
Hanson et al. (2011); Ellul et al. (2014).

2Shleifer and Vishny (1992); Allen and Gale (1994); Mitchell et al. (2007); Acharya et al. (2009); Brun-
nermeier and Pedersen (2009); Gromb and Vayanos (2010); Diamond and Rajan (2011).

3Coval and Stafford (2007); Mitchell et al. (2007); Ellul et al. (2011); Merrill et al. (2012); Feldhütter
(2012); Mitchell and Pulvino (2012).
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celerates in 2004, before many other major systemic risk measures. It then rises steadily,
more than doubles by the end of 2006 and peaks at three times its initial level in 2008.
After the crisis, AV decreases equally dramatically, before stabilizing in 2015 at roughly 40
percent of its initial level in 1999.

We highlight the fire-sale specific factors of delevering speed and concentration of illiq-
uid assets which jointly account for 60 percent of the growth of AV and 50 percent of its
variance between the beginning of our sample in 1999 and the third quarter of 2008, when
AV peaks. Using dynamic panel regressions and real-time data to minimize look-ahead
bias, we show that individual banks’ “systemicness” is an excellent five-year-ahead pre-
dictors of five prominent and widely used measures of firm-specific systemic risk (SRISK,
∆CoVaR, MES, SES and Systemic CCA). For example, even after controlling for contem-
poraneous SRISK and several bank characteristics, an increase in systemicness of 1 percent
is associated with an increase in SRISK of 3.24 percent five years later at the 1 percent level
of statistical significance. In addition, the exposure of each bank to fire-sale spillovers —
which we call “vulnerability” — predicts actual capital shortfalls during the financial cri-
sis as early as the last quarter of 2004. A 1 percent increase in bank vulnerability in the
last quarter of 2004 is associated with a 16.5 percent increase in TARP injections. Had they
been available at the time, our measures would therefore have been useful early indicators
of when and where vulnerabilities were building up.

Our analysis extends the cross-sectional “vulnerable banks” framework of Greenwood,
Landier, and Thesmar (2015), adapting it to a panel analysis to track and dissect vulner-
abilities over time as well as across banks. The framework takes as given banks’ leverage,
asset holdings, asset liquidation behavior, and price impact of liquidating assets. It then
considers a hypothetical large negative shock that leads to an increase in leverage. Banks
respond by selling assets and paying off debt to at least partially retrace the increase in
leverage. These asset fire sales have a price impact that depends on the liquidity of the as-
sets and the amount sold. Any bank that happens to hold assets similar to those that were
fire-sold, even if not initially shocked, will see the value of these asset holdings decline, a
fire-sale spillover. The AV index is the sum of all of these spillover losses — as opposed to
the initial direct losses — as a share of the total equity capital in the system.

We offer two methodological contributions relative to the framework of Greenwood
et al. (2015) that are instrumental in deriving and interpreting our empirical results. First,
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we separate the role of aggregate versus cross-sectional drivers of fire-sale vulnerability
by decomposing AV into aggregate factors and a cross-sectional measure we call “illiquid-
ity concentration.” While it is well known that size and leverage — two of the aggregate
factors — are relevant to systemic risk for various reasons, illiquidity concentration is a
factor that is specific to fire-sale spillovers. Its magnitude, and therefore the vulnerability of
the system to fire sales, depends on the cross-sectional distribution of illiquid assets across
banks of different size, leverage and propensity to delever.4

Second, in Greenwood et al. (2015), a bank’s pre-shock leverage is assumed to be its
post-shock target leverage, and the bank is assumed to fully and immediately adjust back
to its target leverage following a shock. This is a strong assumption for a dynamic appli-
cation with as long a sample period as ours and would (i) implicitly interpret observed
variation over time in a bank’s leverage as variation in the bank’s leverage target and (ii)
rule out variation over time in a bank’s speed of adjustment toward target following a
shock. We generalize this part of the framework and assume that, in response to shocks, a
bank partially adjusts leverage toward a latent target, with time variation both in the target
and in the adjustment speed. Importantly, we are able to seamlessly integrate the partial
adjustment behavior of banks into the AV framework of Greenwood et al. (2015), provid-
ing a new dynamic factor in the decomposition: the adjustment speed to target leverage.
Spillover losses and therefore vulnerability to fire sales are increasing in the adjustment
speed.

We apply the AV framework to a quarterly panel of U.S. bank holding companies
(BHCs) from 1999 to 2016. We focus on BHCs for several reasons: they are a large frac-
tion of the entire U.S. financial sector, including not only commercial banks but also large
broker-dealers and other financial institutions;5 they are a good window into the broader
shadow banking system (Cetorelli et al., 2012; Adrian et al., 2015); detailed regulatory
data on their balance sheets is publicly available; they were forced to fire-sell assets in the
face of deteriorating equity capital during the financial crisis (Bernanke, 2009); and they
were the focus of government interventions. Of course, there are other parts of the finan-

4That different measures of “portfolio overlap” or “interconnectedness” are important for fire sales has
been widely recognized in the literature (Falato, Hortaçsu, Li, and Shin, 2016; Acharya, Shin, and Yorul-
mazer, 2009; Acharya, Pedersen, Philippon, and Richardson, 2009; Allen and Carletti, 2008; Bernanke, 2009;
Cont and Schaanning, 2017; Greenwood, Landier, and Thesmar, 2015).

5Throughout the paper we also refer to BHCs as “banks” for simplicity.
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cial sector beyond the scope of our analysis that can generate large spillovers, either by
themselves or when their linkages with banks are considered. For example, Falato et al.
(2016) study the potential for systemic consequences of fire sales among mutual funds.

Looking at the drivers of overall vulnerability, we find that each of the four AV factors
contributes differently to the total and that the relative contribution of the factors change
over time. Size and leverage—known factors of systemic risk— show the expected trends,
increasing in the pre-crisis period and decreasing towards the end of the sample. The two
factors that we identify as specific to fire-sale spillovers — leverage adjustment speed and
illiquidity concentration — also play important roles in the evolution of AV and in the
cross-section of bank systemicness.

Leverage adjustment speed is roughly constant until 2006, before increasing by over
50 percent and causing AV to spike in late 2008. This is notable since, in our estimation,
we control for any adjustments via equity issuance. The increase in estimated adjustment
speed during the crisis therefore captures greater delevering through balance sheet con-
traction, consistent with fire sales. At the bank level, adjustment speed is positively related
to the level of leverage which adds an interesting asymmetry to the cyclicality of leverage
(Adrian and Shin, 2010), since it implies faster delevering from high leverage than vice
versa.

Illiquidity concentration, the measure capturing vulnerabilities stemming from the
cross-sectional distribution of assets and their liquidities across banks with different size,
leverage, and adjustment speed, has a positive trend starting in late 2002 and increases
by roughly 25 percent until early 2007. We confirm the importance of illiquidity concen-
tration with two further exercises. First, we do a variance decomposition of AV into the
contributions of the variances (and covariances) of the constituent factors; illiquidity con-
centration, after size, is the second greatest contributor to variation in AV pre-crisis and it
is the most stable factor in terms of its contribution across the pre-crisis, crisis, and post-
crisis subsamples. Second, we compare actual AV to a hypothetical AV for a counterfactual
banking system that has the same aggregate portfolio and leverage, but is composed of ho-
mogeneous banks. Over the majority of our sample, AV is over 20 percent higher due to
the heterogeneity of banks in the data.

AV has other unique features that complement and improve upon other existing sys-
temic risk measures. First, AV is constructed from the bottom up using detailed balance
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sheet information of individual asset classes at each bank. In contrast, the predominant
strategy in the literature relies onmarket prices ormacroeconomic aggregates to build top-
down indicators. The more than 30 measures considered in the survey by Bisias, Flood,
Lo, and Valavanis (2012) all use market prices or macroeconomic aggregates as key in-
puts. The three measures that also use balance sheet information rely only on book equity,
total assets, and total liabilities; none use holdings disaggregated by asset class as we do.
Although there are many advantages to using market prices, one important disadvantage
is that volatilities and risk premia are usually compressed just prior to a crisis, pushing
models based on market prices towards low values of systemic risk despite the underly-
ing buildup in vulnerability. In contrast, AV signals increased systemic risk and a consis-
tent buildup at least five years ahead of the crisis. We replicate 35 systemic risk measures
from Bisias et al. (2012) and Giglio, Kelly, and Pruitt (2016) and show that only four of
them are able to capture the slow and steady buildup of risk that accrued before the crisis,
highlighting the usefulness of adding AV to the suite of existing measures. Out of these
four measures, three are constructed using different data and methodologies than AV yet
are closely related to AV, which we interpret as additional evidence that the mechanism
through which systemic risk increased before the crisis is related to the fire-sale channel
we consider. Of course, one must be careful when extrapolating past predictability results
into the future and take into account the various sources of uncertainty not explicitlymod-
eled or estimated.

Finally, ourmeasure is— and already has been— immediately useful for policymakers
and regulators. The designation of systemically important financial institutions (SIFIs)
has become an active area in post-crisis regulation. The Dodd-Frank Act requires, among
other standards, that a financial firm be designated a SIFI when it “holds assets that, if
liquidated quickly, would cause a fall in asset prices and thereby [...] cause significant
losses [...] for other firmswith similar holdings,” a description that almost exactlymatches
the exercise in this paper.6 An earlier version of our measure was used in the designation
of AIG, Metlife, and other companies as systemically important by the Financial Stability
Oversight Council (FSOC), and in the evaluation and dismissal of Fidelity and other asset

6Final rule and interpretive guidance to Section 113 of the Dodd-FrankWall Street Reform andConsumer
Protection Act.
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managers’ cases.7 It has also been adapted to other countries and markets.8

Bank stress testing has become another standard regulatory tool, yet current imple-
mentations mainly consider initial individual losses at large financial institutions, and all
but ignore the second-round losses that can create systemic risk. Our analysis can be inter-
preted as a stylizedmacro-prudential stress test inwhich the regulator provides a scenario
(the initial exogenous shocks to assets) and the framework computes spillover losses for
the system as a whole. Even though the framework is equally easy to implement for any
combination of shocks (any scenario), we calculate the time series of AV by applying the
same shock every quarter, allowing us to understand in a consistent way if changes in the
system from one quarter to the next have affected the vulnerability of the system to fire
sales.

Last, our framework can easily produce counterfactuals to evaluate past policies or
proposals for future reform. For example, we evaluate how vulnerable the system would
have been without the Troubled Asset Relief Program (TARP) and without the post-crisis
tightening in capital and liquidity regulation.

The rest of the paper is structured as follows. In Section 2, we present the framework
used to calculate fire-sale spillovers. In Section 3, we describe the estimation of leverage
targets and adjustment speeds. In Section 4, we present and discuss the results on fire-sale
spillovers. In Section 5, we show robustness of our results with respect to a number of
assumptions. In Section 6, we document the predictive power of the measures.

2 Framework

To calculate potential spillovers from fire sales, we build on the “vulnerable banks” frame-
work ofGreenwood et al. (2015). The framework assumes a simple fire-sale scenariowhere,
after an exogenous shock to assets, banks suffer losses and sell assets to delever. Aggre-
gate fire sales have a price impact, causing the fire-sale spillovers that are the focus of the
analysis.

7United States Department of the Treasury (2012); Financial Stability Oversight Council (2015); Financial
Stability Board (2016); U.S. House of Representatives (2016).

8Levy-Carciente et al. (2015); Zhou et al. (2016); Fricke and Fricke (2017); McKeown et al. (2017); Ellul
et al. (2018).
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Banks are indexed by i = 1, . . . , N and assets (or asset classes) are indexed by k =

1, . . . , K. In period t, bank i has total assets ait with portfolio weight mikt on asset k such
that ∑k mikt = 1. On the liabilities side, bank i has debt dit and equity capital eit, resulting
in leverage bit = dit/eit. We let at = ∑i ait denote the total assets of the system, et = ∑i eit

system equity capital, dt = ∑i dit system debt, and bt = dt/et system leverage. Other than
differentiating between debt and equity, we are making no further assumptions on banks’
liabilities.

2.1 Partial adjustment to target leverage

Greenwood et al. (2015) assume that following a shock s, banks actively adjust leverage
to return to their initial (pre-shock) leverage bit. This is a strong assumption, however,
especially for a dynamic empirical application with a long sample period like ours: (i) it
requires all observed variation in a bank’s leverage to be interpreted as variation in the
bank’s leverage target and (ii) it rules out variation in the adjustment speed over time. We
therefore generalize this part of the framework and, motivated by the evidence of Adrian
and Shin (2010, 2011), assume that banks’ leverage evolves according to the partial adjust-
ment model

bit+1 = λitb∗it + (1− λit) bp
it+1, (1)

where the new level of leverage bit+1 is a convex combination of a passive leverage bp
it+1

and a leverage target b∗it with λit representing the adjustment speed towards the target.
For λit = 1, the bank fully adjusts to its target in one period, while for λit = 0, the bank
does not adjust towards its target at all. Passive leverage is defined by

bp
it+1 =

dit

eit + ∆es
it+1 + ∆eissit+1

, (2)

where ∆es
it+1 is the change in equity due to the shock s and ∆eissit+1 is the change in equity

due to issuance or dividends. Passive leverage is the leverage that the bank would have
if it did not sell any assets. We estimate adjustment speeds λit and leverage targets b∗it for
each bank in Section 3. We show how alternative assumptions about leverage adjustment
affect the calculation of fire-sale spillovers in Section 5.1.
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2.2 Fire-sale spillovers

To quantify vulnerability to fire-sale spillovers, we postulate a hypothetical scenario and
trace how banks respond to the scenario using the partial adjustment model. The fire-sale
scenario is defined by a vector of given shocks ( f1t, . . . , fKt)

> > 0 across asset classes that
hits all banks at the end of period t. The shock f leads to direct losses for bank i, changing
its equity by ∆e f

it+1 = −ait∑kmikt fkt < 0 and increasing its leverage. We assume that all
assets are marked-to-market. We show in Section 5.2 that not marking to market assets
that are usually not marked-to-market in practice (such as loans) does not significantly
affect our results. During the episodes of systemic risk that we are interested in, which are
usually accompanied by distress in capital markets and weak macroeconomic conditions,
equity issuance is expected to be limited, difficult, or undesirable for economic, signaling,
or other reasons (e.g. Shleifer and Vishny, 1992). We therefore assume ∆eissit+1 = 0 in our
hypothetical fire-sale scenario.

Substituting the expression for∆e f
it+1 and∆eissit+1 = 0 into equation (2), passive leverage

in our scenario is given by

bp
it+1 =

dit

eit − ait∑kmikt fkt
. (3)

Without equity issuance, leverage can only be reduced by paying down debt so leverage
after adjustment is given by

bit+1 =
dit+1

eit+1
=

dit + ∆dit+1

eit − ait∑kmikt fkt
, (4)

with ∆dit+1 < 0 determined by the partial adjustment equation (1). Substituting passive
leverage (3) and actual leverage (4) into the partial adjustment equation, we can solve
for the total amount of cash needed to pay down debt and achieve the desired level of
leverage:

−∆dit+1 = λitb∗itait∑kmikt fkt︸ ︷︷ ︸
x f

it

+ λit
bit − b∗it
bit + 1

ait︸ ︷︷ ︸
xb

it

.

This expression is made up of two parts. The first part, x f
it, is the adjustment we are in-

terested in, i.e. in response to the shocks fkt. The second part, xb
it, is a baseline adjustment
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towards target that occurs even in the absence of any shocks fkt and therefore does not
depend on our scenario. If leverage is above target, bit > b∗it, there are baseline asset sales,
xb

it > 0, and vice versa for purchases. Empirically, xb
it is much smaller than x f

it and, eco-
nomically, it is unrelated to fire sales following a shock, so we set it to zero in our fire-sale
scenario. For our calculation of fire-sale spillovers, we focus on the asset sales necessary
to raise an amount of cash x f

it.
The cash x f

it must be raised by selling some combination of the different types of assets
held by the bank. We denote by m̃ikt the amount of each asset that the bank sells as a
share of total sales, i.e. x f

ikt = m̃iktx
f
it. We assume for our benchmark that banks sell in

proportion to their existing portfolio weights, m̃ikt = mikt (as in Greenwood et al., 2015),
to be agnostic about the relative importance of several opposing forces that could lead to
more sales of relatively liquid or illiquid assets.9 We discuss these forces in Section 5.3
together with several alternatives for the liquidation strategy m̃ikt and how they affect the
results. Summing the sales of asset k across banks implies that aggregate sales of asset k
are given by

ykt = ∑im̃iktx
f
it = ∑imiktλitb∗itait∑k′mik′t fk′t. (5)

Next, we assume that the asset sales have a price impact that is linear in the volume
sold. This is the predominant assumption in the empirical literature and seems to fit the
patterns of the data well.10 In addition, we assume there are no cross-asset price impacts,
e.g. selling agency MBS has no direct impact on the price of corporate bonds. The asset
classes we construct in our empirical implementation are sufficiently different to have the
first-order effects be consistent with no cross-asset price impacts. The price impact of asset
k is assumed proportional to its illiquidity `k and inversely proportional to the wealth wt

of potential buyers of fire-sold assets (motivated by Shleifer and Vishny, 1992). Aggregate
9For sufficiently large shocks, some banks may be selling all of their assets. We take this into account in

our empirical implementation by using x f
it = min

{
ait, λitb∗itait∑kmikt fkt

}
.

10Almost all empirical papers that identify fire sales cited in footnote 3 have linear pricing. In the theoreti-
cal literature, the first-round price impact is almost always proportional to the amount sold, sometimes with
multipliers arising only in subsequent liquidation rounds (Kyle, 1985; Glosten and Harris, 1988; Bertsimas
and Lo, 1998; Obizhaeva and Wang, 2013). Quadratic and non-linear costs have also been used and esti-
mated (Heaton and Lucas, 1996; Hasbrouck and Seppi, 2001; Almgren, 2003; Gârleanu and Pedersen, 2013;
Kyle and Obizhaeva, 2016). On the other hand, over many days — which is the relevant horizon for our
study — the non-linearities tend to smooth out and make price impacts much closer to linear (Bouchaud,
2010).
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sales of ykt dollars of asset k therefore have price impact
(
`k
/

wt
)

ykt. Combining with the
expression for aggregate sales in (5), the fire-sale price impact for asset k is given by

f̂kt =
`k
wt

∑imiktλitb∗itait∑k′mik′t fk′t. (6)

Finally, the price impact of the fire-sales cause spillover losses to all banks holding the
assets that were fire-sold, which we can calculate analogously to the very first step above
as ait ∑k mikt f̂kt. Summing spillovers over all banks, we arrive at the total spillover losses
Lt suffered by the banking system as a whole. Written in matrix form, we have

Lt = ∑i′ai′t∑kmi′kt
`k
wt

∑imiktλitb∗itait∑k′mik′t fk′t (7)

=
1

wt
1>AtMtLM>t ΛtB∗t AtMtFt,

where 1> is a row vector of ones, Ft = ( f1t, . . . , fKt)
> is the vector of shocks, Mt the N× K

matrix of portfolio weights, At, B∗t and Λt are N × N diagonal matrices of, respectively,
total assets, leverage targets and adjustment speeds, and L is a K × K diagonal matrix
of price impacts. It is important to note that Lt captures only the indirect losses due to
spillovers. It therefore does not include the direct losses due to the initial shock, given
by ∑iait∑k′mik′t fk′t. This makes our analysis different but complementary to the typical
microprudential stress-test analysis that focuses on the direct losses for a given shock.

In principle, we could restart the delevering sequence in response to the “endogenous
shocks” f̂kt in equation (6). The process could then be repeated, potentially until conver-
gence. In Section 5.4, we verify that our main results are virtually unchanged in this kind
of multi-round liquidation setup.

We want to distinguish between the effects stemming from aggregate characteristics of
the banking system and effects that arise due to the distribution of characteristics across
banks. To do so, we denote by αit = ait/at bank i’s assets as a share of system assets, by
β∗it = b∗it/b

∗
t bank i’s leverage target relative to the average leverage target b

∗
t = 1

N ∑i b∗it
and by λ̃it = λit/λt bank i’s adjustment speed relative to the average adjustment speed
λt = 1

N ∑i λit. For the portfolio weights, we denote by mkt = ∑i miktait/at the system
portfolio weight for asset k and by µikt = mikt/mkt bank i’s portfolio weight for asset k

10



relative to the system portfolio weight. The expression for total spillover losses Lt in (7)
can then be rearranged as

Lt =
a2

t b
∗
t λt

wt
∑k

[
m2

kt`k∑i

(
µiktλ̃itβ

∗
itαit∑k′mik′t fk′t

)]
.

Price impacts `k are notoriously hard to estimate and differ across the limited number
of available studies by orders of magnitude.11 We therefore normalize Lt to 100 at the
beginning of our sample period and treat it as an index, focusing on its changes over time
rather than its level. Further, we choose the same shock across all assets, fkt = ft for all
k, to calculate an overall vulnerability of the system to spillovers while being agnostic
about where a particular fire-sale episode may originate. In this case ∑kmikt ft = ft so
the exogenous shock ft affects Lt linearly. Since we are interested in studying changes in
vulnerability over time, we need the shock to be constant, ft = f for all t to make estimates
directly comparable across time periods. Because we normalize Lt to 100 at the beginning
of our sample period, the actual magnitude of f has no effect on the evolution of the index
so we drop it from the expressions below.

Based on the total spillover losses Lt we define the following three measures of sys-
temic risk.

Aggregate vulnerability: The fraction of system equity capital lost due to spillovers,
Lt/et, captures the “aggregate vulnerability” (AV) of the system to fire-sale spillovers.
This is the main measure of systemic risk that we propose. It can be decomposed into four
factors:

AVt =
at

wt︸︷︷︸
rel. size

× (bt + 1) b
∗
t︸ ︷︷ ︸

leverage

× λt︸︷︷︸×
adj. speed

∑k

[
m2

kt`k∑i

(
µiktλ̃itβ

∗
itαit

)]
︸ ︷︷ ︸ .

illiquidity concentration

(8)

11Ellul et al. (2011) find a median price impact of 7.5 basis points per $10 billion for corporate bonds, with
several basis points of variation depending on bond quality and other factors. Other empirical studies of
the price impact of fire sales are Coval and Stafford (2007) for individual stocks, Jotikasthira et al. (2012)
for emerging market stock indices and Merrill et al. (2012) for non-agency residential MBS. They find price
impact estimates that are much larger than those for corporate bonds. To the best of our knowledge, there
exist no empirical estimates of price impact for bank fire sales or for bank loans, which constitute a large
proportion of their balance sheet.
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The first factor is the size of the system relative to the wealth of outside buyers; if the
banking system grows faster than outside wealth, then aggregate liquidity is lower and
fire sales aremore severe. The second factor combines twomeasures of leverage: aggregate
leverage bt + 1 = ∑i ait

/
∑i eit since spillover losses relative to system equity are increasing

in system leverage; and the average leverage target b
∗
t = 1

N ∑i b∗it which captures how
asset sales are increasing in the average leverage target. The third factor is the average
leverage adjustment speed since spillovers are larger if banks, on average, adjust more
quickly towards target leverage.

The fourth factor, “illiquidity concentration,” captures how the cross-sectional distribu-
tion of assets, size, and leverage adjustment across heterogeneous banks affects fire-sale
vulnerability. Illiquidity concentration is high if assets with a high aggregate share are
illiquid and are held by banks that, relative to the average bank, are large, have a high
leverage target and adjust their leverage quickly. If all banks were the same, equal to a
representative bank with αit = 1/N and β∗it = λ̃it = µit = 1 for all i and k, then illiquidity
concentration collapses to a liquidity-weighted Herfindahl–Hirschman index on portfolio
shares ∑k`km2

kt. In Section 4.3, we find that heterogeneity across banks increases AV by
roughly 20 percent over most of our sample.

Systemicness of bank i: We define the systemicness of bank i as the contribution to AV
of bank i, obtained by dropping the summation over i in expression (8). It also equals
the aggregate vulnerability resulting from a shock exclusively to bank i. Highlighting the
terms that are specific to bank i we have:

SBit =
at

wt
(bt + 1) b

∗
t λt︸ ︷︷ ︸

aggregate factor

× αit︸︷︷︸
size

× λ̃it︸︷︷︸
adj. spd.

× β∗it︸︷︷︸
lev. tar.

× ∑k

[
m2

kt`kµikt

]
︸ ︷︷ ︸
illiquidity linkage

. (9)

The first term contains only aggregate factors so it does not vary across banks. The next
factors are specific to bank i and imply high systemicness if the bank (i) is large with a
high αit, (ii) adjusts quickly with high λ̃it, (iii) has a high leverage target β∗it, and (iv) has
high “illiquidity linkage” by holding large and illiquid asset classes.
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Systemicness of asset k: Similar to the measure for individual banks, we define the sys-
temicness of asset k as the contribution of asset k to AV, equivalently obtained either by
dropping the summation over k in expression (8), or as the aggregate vulnerability for
a shock exclusively to asset k (with fk′t = 0 for k′ 6= k). Highlighting the terms that are
specific to asset k we have:

SAkt =
at

wt
(bt + 1) b

∗
t λt︸ ︷︷ ︸

aggregate factor

× mkt︸︷︷︸
size

× ∑k′
[
m2

k′t`k′∑i

(
µik′tλ̃itβ

∗
itαitµikt

)]
︸ ︷︷ ︸

held by systemic banks

. (10)

Similar to SBit, SAkt can be decomposed into an aggregate factor that is constant across
assets and asset-specific factors. Asset class k is systemic if it is large in aggregate and if it
is held by systemic banks. Although the shock we consider is constant across assets ( fkt =

ft = f for all k), the AV for any general scenario with different shock sizes for different
asset classes can be easily obtained by taking a linear combination of the systemicness of
each asset class SAkt. Therefore, once SAkt is constructed and known, the linearity of the
framework implies that our assumption of a constant shock across assets is without loss
of generality.

Vulnerability of bank i: Instead of summing the spillover losses across all banks as in
equation (7) and taking the ratio to total equity capital, we can consider the spillover losses
suffered by an individual bank relative to its individual equity capital. Highlighting the
terms that are specific to bank i, this vulnerability of bank i is given by

VBit =
at

wt
b
∗
t λt︸ ︷︷ ︸

agg. factor

× (bit + 1)︸ ︷︷ ︸
leverage

×∑k

[
µiktm2

kt`k∑i′
(

µi′ktλ̃i′tβ
∗
i′tαi′t

)]
︸ ︷︷ ︸

holding systemic assets

. (11)

Bank i is more vulnerable if it (i) is more levered, or (ii) holds assets that are large, illiquid,
or held by banks that are larger, have a higher leverage target, or adjust leverage more
quickly.

Appendix A compares our framework and decompositions with those in Greenwood
et al. (2015).
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3 Estimation of leverage targets and adjustment speeds

In this section, we estimate bank-specific leverage targets and adjustment speeds as re-
quired by our generalization of Greenwood et al. (2015). Since our framework to calculate
fire-sale spillovers is highly stylized, we aim to keep the estimation procedure as simple
and transparent as possible. We therefore rely heavily on existing literature and opt for
a standard empirical implementation of a partial adjustment model (e.g. Flannery and
Rangan, 2006; Lemmon et al., 2008) with bank-specific leverage targets and adjustment
speeds that can be estimated in two steps (e.g. Öztekin and Flannery, 2012). Further, since
the goal of our paper is to track fire-sale vulnerabilities in real time, we aim to minimize
look-ahead bias. We therefore estimate leverage targets and adjustment speeds on rolling
windows and only use data up to period t when calculating potential fire-sale spillovers
in period t. We note that the estimation of leverage targets and adjustment speeds makes
use of the partial adjustment framework in Section 2.1 but does not use the hypothetical
fire-sale scenario of Section 2.2. The fire-sale scenario is not used until Section 4, where
we quantify the spillovers under the scenario using the estimated leverage targets and
adjustment speeds.

3.1 Data

We use quarterly data from financial firms that file regulatory form FR Y-9C with the
Federal Reserve. Form FR Y-9C provides consolidated balance sheet information for bank
holding companies, savings and loans associations, and securities holding companies. For
convenience, we refer to all of them as banks. The information in the form is publicly avail-
able and is generally used by regulators to assess and monitor the condition of banking
sector. Banks with total assets over $150 million before 2006q1, over $500 million between
2006q1 and 2014q4, and over $1 billion starting in 2015q1, are required to file.We include
in our sample large banks (any bank that is ever in the top 500 by total assets in a quarter)
because they have the most complete and uniform data and account for almost all assets
(on average, 688 banks per quarter accounting for 98% of system assets). Our measure of
equity is tier 1 capital, which becomes available in the data in 1996q1. Our sample therefore
runs from 1996q1 to 2016q4. We subtract equity from total assets to obtain our measure of
debt. To simplify the analysis, and because cash is not subject to fire sales, we subtract all
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cash holdings from both assets and debt. We cap leverage at 30 whenever it exceeds this
threshold.

3.2 Econometric model

The econometric model corresponding to the partial adjustment model in equation (1) is

bit+1 = λitb∗it + (1− λit) bp
it+1 + εit+1, (12)

b∗it = δ>zit, (13)

λit = γ>wit. (14)

In equation (12), εit+1 is a random error term. Bank i’s actual leverage bit+1 is obtained
at the end of each period directly from the balance sheet data. Passive leverage bp

it+1 is
constructed according to equation (2) with ∆es

it+1 measured by net income (Faulkender
et al., 2012) while net issuance ∆eissit+1, debt dit, and equity eit are directly obtained from
the balance sheet data. We show in Appendix B.1 how treating equity issuance as active
adjustment affects our estimates of adjustment speed.12

The bank’s leverage target for period t and its adjustment speed over period t are mod-
eled in equations (13) and (14), respectively, as functions of explanatory variables. As ex-
planatory variables zit for the leverage target, we use bank-level characteristics commonly
used in the empirical literature on capital structure (for banks, see Berger et al. (2008);
Gropp and Heider (2010); for non-financial firms, see Titman and Wessels (1988); Rajan
andZingales (1995); Frank andGoyal (2009)).We also include a set of aggregate variables,
given their importance in capital structure decisions (Korajczyk and Levy, 2003; Bhamra
et al., 2010; Korteweg and Strebulaev, 2015), as well as bank fixed effects (Flannery and
Rangan, 2006; Lemmon et al., 2008). As explanatory variables wit for the adjustment speed,
we use variables capturing both costs of adjusting leverage as well as regulatory pressures
to adjust it (Berger et al., 2008; Öztekin and Flannery, 2012). Tables 1 and 2 provide a list of
the explanatory variables for the leverage target and adjustment speed, respectively. The

12Since banks cut dividends only very slowly and very late, even in the financial crisis (Hirtle, 2016), we
adjust net issuance by lagged average dividends paid over the previous eight quarters. In addition to cash
dividends, we include stock repurchases (gross purchases of treasury stocks) which are commonly used
by banks instead of cash dividends (Hirtle, 2004). We show in Appendix B.1 that not adjusting for past
dividends does not materially affect our results.
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Table 1: Explanatory variables for leverage target. The table shows descriptions and summary statistics
for the explanatory variables for the leverage target, b∗it = δ>zit, used in the partial adjustment model
of leverage, bit+1 = λitb∗it + (1− λit) bp

it+1 + εit+1. The sample consists of quarterly data from 1996q1 to
2016q4 and includes any bank that is ever in the top 500 by assets in a given quarter of the sample. In
the last two columns, p5 and p95 stand for, respectively, the 5th and 95th percentiles of the distribution.
Sources: FR Y-9C, CRSP, Compustat, FRED.

Bank-specific variables Mean St. dev. p5 p95

Regulatory max Maximum debt/equity implied by the
minimum tier-1 capital ratio requirementa

32.137 11.629 20.062 44.887

CCAR Dummy equal to 1 for banks subject to
SCAP/CCAR stress tests

0.012 0.107 0 0

Size Log of real assets (2016q4 dollars) 21.415 1.425 19.864 24.489
Profitability 8-quarter average of return on assets (net

income/assets, annualized)b
0.009 0.008 -0.003 0.019

Risk 8-quarter standard deviation of return on
assets (annualized)b

0.004 0.005 0.001 0.017

Loan share Loans and lease financing receivables, as a
share of assets

0.687 0.138 0.437 0.875

Retail deposits Money-market and savings accounts, and
small time deposits, as a share of liabilities

0.567 0.206 0.296 0.795

Public Dummy equal to 1 for publicly traded banks 0.467 0.499 0 1
Market-to-book Log market-to-book ratio 7.258 0.576 6.174 8.036

Aggregate variables

GDP growth Quarterly real GDP growth (annualized) 0.024 0.025 -0.017 0.065
Term spread Difference between 10- and 2-year Treasury

yields
0.012 0.009 -0.001 0.026

Recession Dummy equal to 1 for NBER recessions 0.095 0.295 0 1
a The tier-1 capital requirement is on the ratio of tier-1 capital (our measure of equity) to risk-
weighted assets. We convert it to a maximum requirement on debt over equity as (ρe/d

it )−1 =

(ρe/rwa
t rwait

/
dit)
−1.

b We winsorize the quarterly return on assets at the 1st and 99th percentiles before calculating the 8-
quarter average and the 8-quarter standard deviation used as the variables “Profitability” and “Risk”.
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Table 2: Explanatory variables for adjustment speed. The table shows descriptions and summary
statistics for the explanatory variables for the adjustment speed, λit = γ>wit, used in the partial ad-
justment model of leverage, bit+1 = λitb∗it + (1− λit) bp

it+1 + εit+1. The sample consists of quarterly data
from 1996q1 to 2016q4 and includes any bank that is ever in the top 500 by assets in a given quarter of
the sample. In the last two columns, p5 and p95 stand for, respectively, the 5th and 95th percentiles of
the distribution. Sources: FR Y-9C, CRSP, Compustat, FRED.

Bank-specific variables Mean St. dev. p5 p95

Not well capitalized Dummy equal to 1 for tier-1 capital
ratio below the “well capitalized”
threshold (2 percentage points above
the minimum requirement)

0.013 0.112 0 0

Well capitalized 0-20pp Dummy equal to 1 for tier-1 capital
ratio 0 to 20 percentage points above
the “well capitalized” threshold

0.955 0.208 1 1

Capital buffer Difference between tier-1 capital ratio
and “well capitalized” threshold

0.068 0.073 0.017 0.143

Asset growth Year-over-year change in assets 0.120 0.254 -0.072 0.435
Rated Dummy equal to 1 for existing bond

rating
0.078 0.269 0 1

Investment grade Dummy equal to 1 for rated
investment grade (BBB– or better)

0.863 0.344 0 1

Stock return Quarterly average of daily stock return
(annualized)

0.167 0.735 -0.835 1.201

Return volatility Realized volatility of daily stock
return over the quarter (annualized)

0.366 0.258 0.153 0.826

Aggregate variables

Average capital buffer Average difference between tier-1
capital ratio and “well capitalized”
threshold across banks (leaving out
bank i)a

0.068 0.010 0.055 0.088

Stock index return Quarterly average of daily CRSP
value-weighted index return
(annualized)

0.097 0.336 -0.523 0.623

VIX Quarterly average of daily VIX/100 0.207 0.076 0.127 0.307
3m Treasury yield 3-month Treasury yield 0.023 0.022 0.000 0.052
Credit spread Difference between Moody’s seasoned

Aaa and Baa corporate bond yields
0.010 0.004 0.006 0.014

TED spread Difference between 3-month LIBOR
and 3-month Treasury Bill yield

0.005 0.004 0.002 0.011

a The variable “Average capital buffer” varies at the bank level since it is constructed leaving out bank
i’s capital buffer: (Average capital buffer)it =

1
Nt−1 ∑j 6=i (Well capitalized 0-20pp)jt
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roles and details of the explanatory variables are discussed with the estimation results in
Section 3.4.

3.3 Estimation procedure

The model (12)–(14) can be estimated in two steps (e.g. Öztekin and Flannery, 2012).
In the first step, we obtain an estimate of target leverage, b∗it. Substituting the expression
for target leverage (13) into the partial adjustment equation (12) and assuming that the
adjustment speed is constant, λit = λ for all i and t, we get

bit+1 = λδ>zit + (1− λ) bp
it+1 + εit+1. (15)

We can estimate the model (15) with the fixed-effects panel regression

bit+1 = φ>zit + ψbp
it+1 + εit+1, (16)

which yields estimates for λ and δ by using the estimated coefficients φ̂ and ψ̂ to set λ̂ =

1− ψ̂ and δ̂ = φ̂
/

λ̂. Using equation (13), we arrive at the estimate of target leverage b̂∗it =
δ̂>zit.

In the second step, armedwith the estimate b̂∗it, we find an estimate for λit. Substituting
the expression for adjustment speed (14) and the estimated leverage target b̂∗it from the first
step into the partial adjustment equation (12) and rearranging, we obtain:

bit+1 − bp
it+1 = γ>

[
wit ×

(
b̂∗it − bp

it+1

)]
+ νit+1. (17)

We can estimate themodel (17)with an ordinary least squares (OLS) regressionwhere the
dependent variable is the difference between actual and passive leverage, bit+1− bp

it+1 and
the independent variables are the explanatory variables wit multiplied by the difference
between estimated target and passive leverage, b̂∗it − bp

it+1. From this regression, we retain
γ̂, which will be used to construct λit.

Our framework is intended to allow for financial stability monitoring in real time. To
minimize any look-ahead bias, we estimate the econometric model (12)–(14) on rolling
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16-quarter windows.13 We use the resulting rolling estimates
(
δ̂, γ̂
)
to construct bank i’s

leverage target and adjustment speed that will be used in the fire-sale scenario of Section 4.
The leverage target used for the scenario in period t is bank i’s predicted leverage target
for the last date of the estimation window ending at t, b∗it = δ̂>zit. The adjustment speed
used for the scenario in period t is bank i’s average adjustment speed over the estimation
window that ends at t,

λit = γ̂>
(

1
16

t

∑
τ=t−15

wiτ

)
.

Using the average predicted adjustment speed— rather than the last value in the window
— is intended tomake it consistentwith the leverage target: the leverage target is estimated
in step 1 under the assumption of a constant adjustment speed across banks and periods
(equation 15); using the average across periods from step 2 as bank i’s adjustment speed
ensures that the average adjustment speed across banks is close to the constant adjustment
speed λ from step 1.We show in Appendix B.2 how alternative treatments of the windows
affects our estimates of adjustment speed and leverage target.

While the estimation in step 2 (equation 17) is a simple linear regression that we can
estimate with OLS, the estimation in step 1 (equation 16) is very similar to a dynamic
panel regression with bank fixed effects, low T, and large N, where standard fixed-effects
estimation can incur finite-sample bias because the within-group mean of the lagged de-
pendent variable is, by construction, correlated with the error term (Nickell, 1981; Baltagi,
2008). The estimation in step 1 is not literally a dynamic panel regression since it has pas-
sive leverage bp

it+1 instead of the lagged dependent variable bit as an explanatory variable.
However, by construction of bp

it+1 as a transformation of bit, the two are correlated. In Ap-
pendix B.3, we compare the estimated adjustment speeds from a fixed-effects regression to
that from a system GMM approach (Arellano and Bover, 1995; Blundell and Bond, 1998)
—which is designed to address the potential finite-sample bias— and find that both have
a very similar evolution over time.

13We apply a constant correction to all bp
it to ensure that the averages of passive leverage and estimated

target leverage equal the overall average of actual leverage within each estimation window, ∑i ∑t bp
it =

∑i ∑t b̂∗it = ∑i ∑t bit.

19



3.4 Estimation results

We first present results from regressions on the whole sample and then turn to the re-
sults from rolling regressions that provide the estimated leverage targets and adjustment
speeds used in our AV analysis.

Full sample regressions. Table 3 shows results from regressions on the whole sample
from 1996q1 to 2016q4. Column 1 shows results from the fixed-effects regression that cor-
responds to step 1 of our estimation (equation 16). Column 2 shows results from the OLS
regression that yields coefficients of the adjustment speed and corresponds to step 2 of our
estimation (equation 17). For the variables determining the leverage target in column 1,
most coefficients are significant and all have the expected sign. Leverage targets are higher
for looser capital requirements (higher regulatory max) and lower for banks subject to
CCAR stress tests. Banks that are larger, more profitable and riskier have lower leverage
targets. “Traditional” banks with high loan shares and deposit funding have lower lever-
age targets. Publicly traded banks have lower leverage targets on average but increasing
in their market-to-book ratio. In terms of the aggregate variables, leverage targets increase
after higher GDP growth and a reduction in the term spread; recessions are associated
with lower leverage targets.

Column 2 shows results for the variables determining the adjustment speed, broadly
indicating faster adjustment speed for banks under different forms of pressure (consistent
with, e.g. Berger et al., 2008). In the regression, we model the effect that the regulatory
capital constraint has on adjustment speed with a piece-wise linear function of the capi-
tal buffer. The function is equal to a constant value for banks below the well capitalized
threshold (“not well capitalized” dummy) and another constant value for banks more
than 20 percentage points above that threshold (the left-out category). For banks 0 to 20
percentage points above the threshold, the function is affine (the “well capitalized 0-20pp”
dummy is the intercept and its interaction with “capital buffer” is the slope).

The leverage adjustment speed of banks above the well-capitalized threshold increases
as they get closer to the threshold (the coefficient on the interaction “WC 0-20pp x capital
buffer” is negative). This result is consistent with regulators putting increasing pressure
on banks to delever when their capital buffers are low. Once the threshold is breached
and the bank is no longer well capitalized, adjustment speed drops (the coefficient on the
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Table 3: Full sample results for estimation of the leverage partial adjustment model. The table
shows results from estimating the partial adjustment model in two steps. Step 1 models leverage
bit+1 as a function of explanatory variables zit and passive leverage bp

it+1, bit+1 = φ>zit + ψbp
it+1 +

εit+1, estimated with a fixed-effects regression (column 1). Step 2 models the adjustment speed
(bit+1− bp

it+1)
/
(b̂∗it− bp

it+1) as a function of explanatory variables wit, bit+1− bp
it+1 = γ>

[
wit×

(
b̂∗it−

bp
it+1

)]
+ νit+1, estimated with OLS (column 2) with b̂∗it =

(
φ̂
/ (

1− ψ̂
))> zit using the estimates φ̂

and ψ̂ from step 1. For details on the explanatory variables, see Table 1. The sample consists of
quarterly data from 1996q1 to 2016q4 and includes any bank that is ever in the top 500 by assets in a
given quarter of the sample. t-statistics are reported in parentheses, computed using standard errors
robust to heteroskedasticity and autocorrelation clustered at the bank level; significance: ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

(1)

Constant 5.669∗∗∗
(14.13)

Regulatory max 0.001∗∗∗
(3.34)

CCAR -0.038
(-0.74)

Size -0.202∗∗∗
(-10.93)

Profitability -6.352∗∗∗
(-2.78)

Risk -10.306∗∗∗
(-4.65)

Loan share -0.009
(-0.09)

Retail deposits -0.041∗
(-1.72)

Public -1.420∗∗∗
(-6.85)

Public x MTB 0.197∗∗∗
(7.10)

GDP growth 0.419∗∗
(2.00)

Term spread -4.301∗∗∗
(-7.31)

Recession -0.031
(-1.55)

Passive leverage 0.901∗∗∗
(120.21)

Adj. R-squared 0.84
Observations 55008

(2)

Constant 0.115∗∗
(2.53)

Not well capitalized -0.027∗
(-1.87)

Well capitalized 0-20pp 0.051∗∗∗
(5.42)

WC 0-20pp x Capital buffer -0.203∗∗
(-2.18)

Asset growth 0.025∗∗∗
(2.89)

Public 0.001
(0.15)

Public x Stock return -0.010∗
(-1.78)

Public x Return volatility 0.010
(0.94)

Rated 0.093
(1.59)

Rated x Investment grade -0.078
(-1.31)

Average capital buffer -1.059∗∗∗
(-2.83)

S&P 500 return -0.017∗
(-1.92)

VIX 0.009
(0.14)

3m Treasury yield 0.113
(0.36)

Term spread 0.699
(1.61)

Credit spread 0.229
(0.15)

TED spread 1.771
(1.09)

Adj. R-squared 0.16
Observations 55008
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“not well capitalized” dummy is negative). In this case, the operational regime of the bank
changes and with it the adjustment speed, possibly due to regulatory intervention.

Also consistent with the idea that banks adjust leverage faster under different forms of
pressure is the negative coefficient on banks’ individual stock returns. Adjustment speed
is higher for banks with high asset growth, which seems contrary to the general pattern
of higher adjustment speeds for banks under pressure. We interpret this relation as being
instead due to the fact that concurrent large changes in assets and the capital structure
are dominated, holding the other covariates constant, by mergers and acquisitions — of
which there are plenty in our sample.

Finally, the coefficients on the average capital buffer across banks (leaving out bank i’s
own capital buffer) and on S&P 500 returns are negative and significant. A low aggregate
capital buffer and low aggregate stock returns increase bank i’s adjustment speed, even
after controlling for bank i’s own capital buffer and its own stock returns. Therefore, ag-
gregate conditions are important for the individual leverage adjustment speed of banks,
with bad aggregate conditions accompanied on average by faster adjustment speeds.

Rolling regressions. Figure 1 summarizes the leverage targets and adjustment speeds
resulting from estimating steps 1 and 2 (equations 16 and 17, respectively) on rolling 16-
quarter windows. As discussed in Section 3.3, each estimation window results in a lever-
age target and an adjustment speed for each bank. The left panel of Figure 1 compares
the evolution over time of the average estimated bank-level target to the average actual
leverage in the data. In the pre-crisis period, the two measures are very close. Starting in
2007, as banks’ actual leverage increases due to losses, the two divergewith target leverage
remaining flat. Starting in 2010, actual and target leverage decline, consistent with tighter
post-crisis regulation.

The right panel of Figure 1 shows the evolution over time of the average estimated
bank-level adjustment speed (from step 2), comparing it to the estimate in step 1 which
is constant across banks. As expected, the two measures are very close (see the discus-
sion in Section 3.3). The estimated adjustment speed is fairly stable until 2006 and then
increases by more than 50% between 2006q1 and its peak in 2008q3. After the crisis, ad-
justment speed declines quickly until 2014, before leveling off at about 60% of its pre-crisis
level. From the results in Table 3, column 2, we know that the capital buffer is the main
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Figure 1: Leverage target and adjustment speed. The figure shows results from 16-quarter rolling
regressions estimating the dynamic adjustmentmodel in two steps. Step 1models leverage bit+1 as a
function of explanatory variables zit and passive leverage bp

it+1, bit+1 = φ>zit +ψbp
it+1 + εit+1. Step 2

models the adjustment speed (bit+1− bp
it+1)

/
(b̂∗it − bp

it+1) as a function of explanatory variables wit,
bit+1− bp

it+1 = γ>
[
wit×

(
b̂∗it− bp

it+1

)]
+ νit+1 with b̂∗it =

(
φ̂
/ (

1− ψ̂
))> zit using the estimates φ̂ and

ψ̂ from step 1. The left panel shows the average actual leverage and the average estimated leverage
target from step 1, using the leverage target predicted for the last period t = 16 of every window.
The right panel shows the adjustment speed λ̂ estimated in step 1 and the average adjustment speed
estimated in step 2, using the bank-level average predicted adjustment speed 1

16 ∑16
t=1 γ>wit within

each window. The sample consists of quarterly data from 1996q1 to 2016q4 and includes any bank
that is ever in the top 500 by assets in a given quarter of the sample.
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driver of adjustment speed with adjustment speed inversely related to capital buffer. Con-
sistent with that, the low-frequency movements in average adjustment speed in Figure 1
are related to corresponding low-frequencymovements in the capital buffer: between 2005
and 2008, bank capital was eroding with the average capital buffer declining by over 20%,
which is consistent with the increase in adjustment speed in the run-up to the crisis. Be-
tween 2008 and 2011, the post-crisis increases in bank capital raised the average capital
buffer by over 60%, which is consistent with the concurrent sharp drop in adjustment
speed. Our result that the speed of leverage adjustment is negatively related to the level of
bank capital also adds an interesting asymmetry to the cyclicality of leverage first docu-
mented by Adrian and Shin (2010) since it implies faster adjustments “on the way down”
(delevering from high leverage) than vice versa.

At the bank level, there is meaningful variation in leverage targets and adjustment
speeds in both the cross-section and the time series. The ratio of between-variation to
within-variation for target leverage is about 1.5, i.e. more cross-sectional than time-series
variation, and about 0.7 for adjustment speed, i.e. somewhat more time-series than cross-
sectional variation. See Table 4 for additional summary statistics of leverage target and
adjustment speed.

4 Calculation of fire-sale spillovers

We now present the results of calculating fire-sale spillovers in the form of AV, bank sys-
temicness, and asset systemicness (equations 8, 9, and 10, respectively), using the esti-
mates for leverage targets and adjustment speeds from Section 3. We then study the role
of the individual factors of AV in equation (8) and evaluate the effect of key regulatory
policies on AV.

4.1 Data

We calculate spillover losses using equation 7. Thematrices of total assets At and portfolio
weights Mt come directly from the FR Y-9C balance sheet data described in Section 3.1.
We group assets into the seventeen categories listed in Table 4 to construct the matrix of
portfolio weights Mt; Appendix C contains the mapping between these asset classes and
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Table 4: Summary statistics for balance sheet data. The table shows summary statistics for the
variables used in the calculation of fire-sale spillovers. The sample includes the largest 100 banks by
assets every quarter that have estimates for leverage target and adjustment speed available, resulting
in a sample period from 1999q3 to 2016q3 at the quarterly frequency (Section 3). “SW avg.” denotes
the size-weighted average (weighted by total assets); “EW avg.” denotes the equal-weighted aver-
age. “p5” and “p95” stand for, respectively, the 5th and 95th percentiles of the distribution. The last
column shows the price impact for each asset class based on the Net Stable Funding Ratio, where
the price impact of U.S. Treasuries is normalized to 1 (Appendix D). Source: FR Y-9C and estimation
in Section 3.

SW avg. EW avg. St. dev. p5 p95 `k

Total assets ($ billions) 834.6 105.1 295.3 6.3 481.4
Leverage target 13.6 11.5 3.9 6.8 16.9
Adjustment speed (percent) 24.1 23.3 6.2 13.6 33.5

Portfolio shares (percent):
Residential real estate loans 15.3 16.8 10.8 0.2 36.3 12.0
C & I loans 10.9 13.2 8.4 0.4 27.2 15.0
Repo & fed funds loans 9.9 2.7 7.2 0.0 14.9 2.0
Agency MBS 8.8 12.3 9.3 0.8 29.9 3.0
Consumer loans 8.7 7.0 10.1 0.1 18.2 15.0
Commercial real estate loans 7.6 19.3 13.4 0.2 43.6 15.0
ABS & other debt securities 6.7 2.7 5.5 0.0 11.7 7.0
U.S. Treasuries 2.2 1.4 2.9 0.0 6.7 1.0
Equities & other securities 1.9 0.8 2.7 0.0 2.6 11.0
Non-agency MBS 1.8 1.6 3.2 0.0 7.5 13.0
Agency securities 1.7 3.7 5.5 0.0 14.5 3.0
Lease financings 1.5 1.5 2.4 0.0 6.1 15.0
Municipal securities 1.2 2.0 2.9 0.0 7.6 12.0
Other real estate loans 1.0 1.1 3.7 0.0 3.6 15.0

Residual loans 4.6 3.7 5.2 0.0 10.9 15.0
Residual securities 4.3 0.8 2.7 0.0 4.1 20.0
Residual assets 11.7 9.4 6.5 3.1 19.9 20.0

entries in form FR Y-9C. We choose this particular categorization of asset classes so as
to have the finest possible subdivision while reasonably maintaining the assumption of
no cross-asset price impacts of fire sales. Banks’ leverage targets and adjustment speeds
(estimated in Section 3) are collected in the diagonal matrices B∗t and Λt. To measure the
wealth wt of potential buyers of fire-sold assets, we use the value of total financial sector as-
sets from the Financial Accounts of the United States (formerly Flow of Funds) minus the
assets in our sample. For robustness, we also consider in Appendix E.1 constant outside
wealth as well as outside wealth that scales with GDP. There are no readily available esti-
mates for the liquidity of most assets of banks. Greenwood et al. (2015) therefore assume
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Figure 2: Aggregate vulnerability index and decomposition into factors. The figure shows the
aggregate vulnerability index (left panel) and the decomposition into multiplicative factors based
on equation (8) (right panel). All series are normalized to 100 at the beginning of the sample.

the same price impact for all assets, `k = ` for all k. Instead, we introduce heterogeneity
in the liquidity of asset classes by using the information contained in the Net Stable Fund-
ing Ratio (NSFR) of the Basel III regulatory framework. We use the NSFR instead of the
Liquidity Coverage Ratio (LCR) since it distinguishes asset classes more finely. The NSFR
involves applying haircuts to different asset classes to account for differences in liquidity
over a horizon of one year. The last column of Table 4 shows the values of price impact
`k, normalized to the value for Treasuries (since the absolute value does not affect the AV
which is normalized to 100 at the beginning of the sample). Appendix D shows in detail
how we impute liquidity values for different assets using the NSFR guidelines. We con-
sider the case in which all assets have the same liquidity (as in Greenwood et al., 2015) in
Appendix E.1. To calculate AV, we include the top 100 banks every quarter that have esti-
mates for leverage target and adjustment speed from Section 3. For robustness, we show
in Appendix E.2 that results with a balanced panel are very similar.
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4.2 Results

Figure 2 shows the evolution of AV, our main measure of systemic fire-sale risk, as well as
its comprising factors from equation (8), which we also normalize to 100 at the beginning
of the sample. AV shows a weakly increasing trend between 2000 and the end of 2003.
Starting in 2004, it increases quickly until the financial crisis, more than doubling by the
end of 2006 and peaking at three times its initial level in 2008q3. If available at the time,
our measure would have been useful as an early indicator of vulnerabilities building up;
we explore this issue more formally with predictive regressions in Section 6. The measure
decreases sharply over the course of 2009 and returns to its initial level in 2011. In the post-
crisis period, the measure declines further before stabilizing in 2015 at around 40 percent
of its initial level.

Studying the four comprising factors of AV in the right panel of Figure 2, we see that
each factor contributes differently to the total and that the contributions change over time.
Relative size of the banking system (compared to the rest of the financial sector) and lever-
age show expected trends, increasing in the pre-crisis period and decreasing towards the
end of the sample. Of note are the sharp decline in leverage in late 2008mostly due to bank
recapitalizations (TARP, see Section 4.4) and the increase in relative size in early 2009 due
to the addition to the sample of firms such as Morgan Stanley and Goldman Sachs which
became bank holding companies. Asmentioned above, Appendix E.2 shows that ourmea-
sure is robust to using a balanced panel, so that firms that enter and exit the sample do
not drive our results.

Size and leverage are known to be potential contributors of systemic risk, also through
mechanisms different from fire sales. It is therefore crucial for the importance of the fire-
sale channel that the two factors more specific to fire-sale spillovers — adjustment speed
and illiquidity concentration — also play important roles in the evolution of AV. Average
adjustment speed is roughly constant between 2000 and 2006, and then increases by over
50 percent through 2008, causing AV to spike. This is notable since, as discussed in Sec-
tion 3,we have controlled for any adjustments via equity issuance so the estimated increase
in adjustment speed during the crisis reveals greater leverage adjustment that explicitly
excludes the adjustments that resulted from raising equity.

Turning to illiquidity concentration, which captures the concentration of more illiquid
assets among banks that are relatively levered, adjust relatively quickly, and are relatively
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Figure 3: Fire-sale externality of most systemic banks and assets. The figure shows the most sys-
temic banks and assets, plotting the evolution of the measures SBit and SAkt from equations (9) and
(10), respectively. Which banks and assets are most systemic is determined by sample averages. Se-
ries are normalized to sum to 100 at the beginning of the sample.

large, we see a positive trend starting in 2004; between 2004 and 2007, illiquidity concen-
tration increases by roughly 25 percent. In the post-crisis period, it remains fairly stable
before starting a downward trend in 2013. Jointly, the two fire-sale specific factors of ad-
justment speed and illiquidity concentration account for over 60 percent of the increase in
AV from 2000 until its peak in 2008.

Figure 3 reports the evolution over time of the measures SBit and SAkt from equations
(9) and (10) for the six banks and assets that have the highest average systemicness in
our sample. Since we normalize AV to 100 at the beginning of the sample and SB and SA
themselves sum up to AV, we normalize them so that they sum to 100 at the beginning of
the sample.

Among banks, Citigroup is themost systemic for themajority of the sample, with Bank
of America and JPMorgan Chase following closely behind. Despite their overall systemic-
ness measures being highly correlated, there are clear differences in the patterns due to
differences in the evolution of the bank specific factors in decomposition (9).

Table 5 lists the top ten banks by average fire-sale systemicness in the post-crisis period
(2008q4–2016q3) as well as any bank not in the top ten by systemicness that has been des-
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Table 5: Most systemic banks post crisis and G-SIB surcharge. The table lists the top ten banks
by average systemicness (SBi) in the post-crisis period (2008q4–2016q3) as well as any bank not in
the top ten by systemicness that has a G-SIB surcharge. Systemicness is normalized to sum to 100
at the beginning of the sample (1999q3). Asset (ai) rank is also based on the average in the post-
crisis period (2008q4–2016q3). G-SIB surcharge is the maximum surcharge assigned to each bank
between 2011 and 2016, in percent. Excludes foreign banks.

SBi rank ai rank Name SBi G-SIB

1 2 Bank of America 16.0 2.0
2 1 JP Morgan Chase 12.8 2.5
3 3 Citigroup 11.4 2.5
4 7 Metlife 10.2 .
5 4 Wells Fargo 8.8 1.5
6 6 Morgan Stanley 3.1 1.5
7 5 Goldman Sachs 2.5 1.5
8 8 U.S. Bancorp 2.1 .
9 9 PNC 1.8 .
10 10 Capital One 1.6 .

13 11 Bank of NY Mellon 1.1 1.5
21 14 State Street 0.6 1.0

ignated as a Global Systemically Important Bank (G-SIB) by the Financial Stability Board,
resulting in a regulatory capital surcharge. While broadly consistent, there are differences
between our systemicness measure and the one implied by the G-SIB surcharge. For ex-
ample, our systemicness ranks Bank of America first while it is only second in terms of
size and third in terms of G-SIB surcharge. Further, Bank of NY Mellon and State Street
are G-SIBs even though our systemicness measure ranks them below several non-G-SIBs.
Both of these differences are primarily due to the fact that the G-SIB designation consid-
ers additional factors such as international scope and substitutability that are unrelated
to fire sales. Finally, our measure assigns high systemicness to Metlife at rank 4 while it
only ranks 7th by size. Consistently, Metlife was designated by the FSOC in December
2014 as systemically important. The designation was partly based on the systemic threat
Metlife could pose through the “asset liquidation channel”, using an earlier version of
our measure (Financial Stability Oversight Council, 2015). Overall, fire-sale systemicness
highlights slightly different institutions than size alone or the G-SIB framework.

Among assets, residential real estate loans stand out in Figure 3 as the most systemic
and with the fastest growth in the run-up to the crisis. This is not just because they have a
large average portfolio share, but also because they are held in large amounts by the most
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systemic banks (as can be inferred by the difference between size-weighted and equal-
weighted averages in the portfolio shares in Table 4). They are also a key determinant
of the illiquidity concentration factor of AV: between 2002 and 2007 a large proportion of
banks increased their portfolio share of residential real estate loans, making balance sheets
across the system more similar. The next most systemic asset, C & I loans, are as systemic
as residential real estate loans until 2002 when the bifurcation in their aggregate portfolio
shares occurs. By the end of our sample, no asset class stands out as particularly more
systemic than the rest.

4.3 Effect of factors on AV

To further disentangle the contribution of the individual factors of AV in equation (8), we
first do a variance decomposition and then consider a hypothetical version of AV in which
banks are homogeneous.

Variance decomposition. We can decompose the variance of log AV into the variances
and covariances of the logs of the factors relative size, leverage, adjustment speed, and
illiquidity concentration according to

var
(
logAV

)
= var

(
∑n log Xn

)
= ∑nvar

(
log Xn

)
+ ∑n∑m 6=ncov

(
log Xn, log Xm

)
. (18)

We then sum the contributions of each log factor, i.e. its variance and all covariances and
express the total relative to the variance of log AV according to

contribution of factor Xn ≡
var
(
log Xn

)
+ ∑m 6=ncov

(
log Xn, log Xm

)
var
(
∑m log Xm

) . (19)

Figure 4 (left panel) shows the results of this variance decomposition across three sub-
periods of our sample: before the crisis (before 2007q1), during the crisis (2007q1–2009q4),
and after the crisis (after 2009q4). We see that the contribution of relative size is large pre-
crisis but much smaller post-crisis and even negative during the crisis (due to negative
covariances with the other factors). In contrast, the contribution of leverage is greatest
during the crisis and only about half as large in the pre and post period. Variation in ad-
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Figure 4: Effect of factors onAV.The left panel shows the contribution of the four factors in equation
(8) to the variance of log AV, using the variance decomposition given by equation (18). The right
panel shows the ratio of actual AV to a counterfactual AV in which all banks are homogeneous.
“Pre-crisis” is 1999q3–2006q4, “Crisis” is 2007q1–2009q4, and “Post-crisis” is 2010q1–2016q3.

justment speed contributes little to variation in AV pre-crisis but increases its contribution
during the crisis and is the second largest contributor post-crisis. Finally, illiquidity con-
centration stands out as the second largest contributor to variation in AV pre-crisis and
the most stable contributor over the whole sample. Jointly, the fire-sale specific factors ad-
justment speed and illiquidity concentration account for 40 percent of the variance of AV
during the pre-crisis period until 2006q4.

Effect of heterogeneity on AV. An important element of the AV framework is the non-
neutrality with respect to the distribution of a given “aggregate balance sheet” across dif-
ferent institutions, as captured by the illiquidity concentration factor in the decomposi-
tion (8). We can study this effect of bank heterogeneity by constructing a counterfactual
system in which banks are homogeneous and comparing the resulting fire-sale vulnera-
bility to benchmark AV. To construct such a counterfactual measure we assume that all
banks are equally sized, have the same leverage target and adjustment speed, and hold
the same asset portfolio — effectively creating a representative bank. This requires set-
ting αit = 1/N, β∗it = 1, λ̃it = 1 and µikt = 1 for all i, k in the expression for aggregate
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vulnerability in equation (8):

AVhom
t =

at

wt
(bt + 1) b

∗
t λt∑k

(
m2

kt`k

)
.

Taking the ratio of actual AV to the hypothetical homogeneous AVhom, the first three fac-
tors (which depend on aggregate variables only) cancel and we are left with a ratio of the
respective illiquidity concentration factors:

AVt

AVhom
t

=
∑k

[
m2

kt`k∑i

(
µiktλ̃itβ

∗
itαit

)]
∑k
(
m2

kt`k
) .

Figure 4 (right panel) shows the evolution of this ratio over time, highlighting that the ef-
fect of heterogeneity on AV can be large and variable over the sample. From the beginning
of the sample until the crisis, the effect of heterogeneity increases steadily, leaving AV in
2007 over 30 percent higher due to heterogeneity. Starting in 2013, the effect declines and
eventually disappears with AV almost unchanged by bank heterogeneity at the end of the
sample in 2016.

4.4 Effect of regulatory policies on AV

The crisis led to a strong regulatory response intended to reduce acute systemic stress as
well as vulnerability to future systemic risk. In this section, we consider the effects of three
regulatory policieswith potential effects on the fire-sale vulnerabilities that are the focus of
our paper. First, we consider the effect of the TroubledAsset Relief Program (TARP)which
involved a significant recapitalization of U.S. banks in late 2008 and early 2009. Second, we
consider the effect of the post-crisis tightening of capital regulation, especially for G-SIBs.
Third, we consider the effect of the post-crisis change in bank asset portfolios due to new
liquidity regulation. Finally, since regulators may try to slow down deleveraging during
crises, e.g. by being more lenient with respect to low capital buffers, we also consider the
effect of hypothetically lower adjustment speeds during the crisis period.

TARP recapitalization. At the high-point of the financial crisis in the fall of 2008, the
U.S. government initiated TARP, which included a recapitalization of U.S. banks. For the
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Figure 5: Effects of TARP, capital regulation and liquidity regulation on AV. The figure shows
the ratio of benchmark AV to a counterfactual AV in which each bank’s leverage is adjusted by
the capital injection it received through TARP (left panel), a counterfactual AV in which, starting in
2008q4, each bank’s leverage is kept constant at its 2006q4 level (middle panel), and a counterfactual
AV inwhich, starting in 2008q4, each bank’s asset portfolio weights are kept constant at their 2006q4
levels (right panel).

banks in our sample, TARP increased equity by $155 billion in 2008q4 and by a further
$11 billion in 2009q1, which is close to 70 percent of their net equity issuance in these
quarters. To assess the effect of this crisis recapitalization, we calculate a counterfactual AV
without the extra equity capital from TARP. To do so, we reduce each bank’s equity and
increase its actual and target leverage as if it had not been recapitalized.14 For simplicity,we
leave unchanged each bank’s estimated adjustment speed; since adjustment speed varies
inversely with capital (Section 3) this means we likely underestimate the decrease in AV
arising from the TARP recapitalization. Figure 5 (left panel) shows the ratio of benchmark
AV to the counterfactual without the TARP recapitalization in 2008q4 and 2009q1. AV
without TARP would have been considerably higher, 59 percent in 2008q4 and 43 percent
higher on average over the entire post-crisis period.

14For equity, we just subtract cumulative TARP injections, enotarpit = eit −∑s≤t ∆etarpis . For target leverage,
we first infer a target equity e∗it from target leverage b∗it and assets ait as e∗it = ait

/
(b∗it + 1). Then we subtract

TARP injections, e∗notarpit = e∗it − ∑s≤t ∆etarpis , and create the counterfactual target leverage as b∗notarpit =(
ait − e∗notarpit

)/
e∗notarpit .
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Capital regulation. After the recapitalization throughTARP, leverage post-crisis declines
further due to, among other factors, stress testing and tightened capital regulation under
the Basel III framework. To assess the effect of this decline in leverage, we calculate a coun-
terfactualAVwhere, starting in 2008q4,we set each bank’s leverage constant at its pre-crisis
level (as of 2006q4, before the increase in leverage due to crisis losses). The middle panel
of Figure 5 plots the ratio of benchmark AV to this counterfactual with pre-crisis leverage.
Similar to the effect of TARP, we see that AV under pre-crisis leverage would have been
considerably higher, 43 percent on average over the entire post-crisis period and almost
double toward the end of the sample. Among individual banks, regulation was tightened
even more for G-SIBs. Consistent with that, our counterfactual finds a larger effect for
G-SIBs: while systemicness with pre-crisis leverage in the post-crisis period would have
been 37 percent higher on average across all banks, it would have been 47 percent higher
for banks designated as G-SIBs and 68 percent higher for those in the highest G-SIB capital
surcharge bucket.

Liquidity regulation. The post-crisis regulation under the Basel III framework also in-
cludes new liquidity requirements. The liquidity coverage ratio (LCR) and the net stable
funding ratio (NSFR) require large banks to hold sufficiently liquid assets relative to the
liquidity of their liabilities. Roberts, Sarkar, and Shachar (2019) show that, in response,
the affected banks changed the composition of their assets toward more liquid holdings.
To assess the effect of this policy change, we calculate a counterfactual AV where, starting
in 2008q4, we set each bank’s asset portfolio weights constant at their pre-crisis levels (as
of 2006q4, analogous to the capital regulation analysis above). We see in Figure 5 (right
panel) that without the post-crisis changes in asset portfolios, AV would have been about
15 percent higher over the entire post-crisis period. Among individual banks, systemic-
ness would have been 6 percent higher on average across all banks, 8 percent higher for
banks designated as G-SIBs, and 23 percent higher for those in the highest G-SIB bucket.
On average, the effect of liquidity regulation on AV is therefore less than half of the effect
of capital regulation but the effect is relatively more skewed towards the most systemic
banks.
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Regulatory lenience. Regulators have some discretion in implementing and enforcing
regulations, which affects bank’s behavior (e.g. Eisenbach, Lucca, and Townsend, 2019).
This raises the question of how much AV, especially during the crisis period, would have
been reduced if regulators had been more lenient and allowed slower adjustments. We
therefore calculate a counterfactual AV where, during the years 2007 and 2008, we cap
each bank’s adjustment speed at its pre-crisis level (as of 2006q4) and leave everything
else unchanged. We find that this hypothetical regulatory lenience would have reduced
AV by 8 percent on average during 2007 and 2008, with the effect largest in 2008q3 where
AV is reduced by 20 percent. Temporary regulatory lenience can therefore reduce the costs
of fire sales during times of stress but the magnitude of the effect is smaller than that of
the capital and liquidity regulations discussed above.

5 Robustness

We present four sets of robustness checks: (i) alternative assumptions about leverage ad-
justment, (ii) notmarking loans tomarket, (iii) alternative rules for liquidating assets, and
(iv) conducting multiple rounds of fire sales. Several additional robustness checks are in
Appendix E.

5.1 Different assumptions about leverage adjustment

In our calculation of AV, we assume that, following a shock, banks adjust partially back to
a target leverage and that the adjustment speed varies across banks and time.We now con-
sider the effects of these assumptions by comparing our benchmark AV to three versions
with alternative assumptions about leverage adjustment. First, we assume that the adjust-
ment speed is constant across banks and equal to the estimate from step 1 of our estimation
(Section 3). The left panel of Figure 6 shows the resulting time series of AV. We see a sim-
ilar evolution over time as in benchmark AV but a smaller increase from the beginning of
the sample to the peak of the crisis. While benchmark AV triples in magnitude, the alter-
native with constant adjustment speed across banks only doubles. This difference means
that, in benchmark AV, individual banks’ adjustment speed interacts with their leverage
and asset holdings in a way that increases overall vulnerability to fire-sale spillovers.
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Figure 6: Comparison of benchmark AV to AVwith different assumptions about leverage adjust-
ment. The figure shows the effects on AV of assuming (i) constant adjustment speed across banks,
equal to the estimate in step 1 of the estimation in Section 3 (left panel); (ii) constant adjustment
speed across banks and time (middle panel); and (iii) constant adjustment speed with pre-shock
leverage as the target (right panel). Alternative AV series are normalized by the relative size of the
raw AV values at the beginning of the sample.

Second, we assume that the adjustment speed is not only constant across banks, as in
the previous exercise, but also constant over time and equal to the overall average. The
middle panel of Figure 6 shows the resulting time series of AV, with an almost identi-
cal evolution to benchmark AV until 2006, when the increase in adjustment speed leads
benchmark AV to increase considerably more before its peak.

Finally, we completely eliminate the effects of our partial adjustment estimation on AV
by assuming that adjustment speed is constant across banks and time, as in the previous
exercise, and that banks’ target leverage is their current (pre-shock) leverage. Under these
assumptions, our framework is equivalent to the original “vulnerable banks” framework
of Greenwood et al. (2015). The right panel of of Figure 6 shows the resulting time series
of AV, which is almost identical to the previous exercise in the middle panel where the
leverage target was still the one estimated in Section 3. In sum, we see that our assumption
of a partial adjustment model for bank leverage has a sizable effect on AV and mainly
through the bank-specific adjustment speed.
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Figure 7: Comparison of benchmark AV to AV without marking-to-market loans. The figure
shows the effect on AV of not marking to market loans (as well as residual securities and resid-
ual assets). AV without marking-to-market is normalized by the relative size of the raw AV values
at the beginning of the sample.

5.2 Not marking-to-market loans

Banks do not mark-to-market every asset on their balance sheet. A portion of their balance
sheet can be “held-to-maturity,” allowing interim unrealized losses to go unrecognized.
In such cases, when confronted with a negative shock, banks may not recognize the full
extent of the economic losses on their balance sheets. While the economic pressure to sell
assets is still present, a more benign accounting-based leverage may relax the need to fire-
sell assets, at least in the short run. We therefore consider the extreme case in which banks
simply do not mark down any loans, residual securities, or residual assets (and mark-
to-market the rest of their balance sheet). Figure 7 displays the results, comparing the
benchmark AV to the version without marking-to-market. We normalize the latter index
by the same initial value that we use to normalize AV, so that the difference in magnitude
and not just evolution over time, can be compared.When banks do notmark down illiquid
assets at all, AV is cut by more than half. However, the behavior of the index over time
hardly changes.
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5.3 Alternative liquidation rules

Selling the most liquid assets first has the important advantage of minimizing the price
impact of fire sales, which reduces immediate total losses. In addition, some illiquid as-
sets may simply be impossible to sell. However, there are several good reasons for selling
illiquid assets first. For example, in the summer of 2008, Lehman Brothers sold some of its
less liquid assets, including commercial MBS, commercial mortgage inventory, leveraged
loans and LBO-related debt while keeping a relatively constant liquidity buffer (Valukas,
2010). If banks expect that markets will become more illiquid in the future, the liquid-
ity premium should be smaller today than tomorrow, creating an incentive to hold on to
liquidity until it is more valuable (Brown et al., 2009; Krishnamurthy, 2010). Regulatory
requirements on risk-weighted assets as well as post-crisis liquidity regulations (LCR and
NSFR) create an incentive to sell assets with high risk-weights first (Cifuentes et al., 2005;
Hameed et al., 2010; Merrill et al., 2012). At the same time, however, assets with high risk
weights tend to be more illiquid. This creates a tension between selling assets that have
high risk-weights but are less liquid – which eases the capital requirement but imposes
higher liquidation costs – and selling assets that have low risk-weights but are more liq-
uid.

For robustness, we calculate AV under three alternative liquidation rules: (i) sell liquid
assets first, (ii) sell liquid assets last, (iii) sell assets proportional to liquidity, and (iv)
minimize price impact subject to a risk-based capital requirement.

Sell liquid assets first. We first assume a simple “waterfall” strategy, whereby banks
sell assets in decreasing order of liquidity until they achieve their desired leverage. The
results are in Figure 8 (left panel), where, for level comparison to the benchmark index,
we have normalized the alternative AV indices by the relative size of the raw AV values at
the beginning of the sample, as we did before. When selling liquid assets first, the level of
AV is cut by roughly 90 percent on average but the behavior of the index over time does
not materially change.

Sell liquid assets last. This strategy is the reverse of the previous one so assets are now
sold in increasing order of liquidity. As shown in Figure 8 (left panel), this assumption
increases the level of AV by roughly 30 percent on average but in terms of the behavior of
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Figure 8: Comparison of benchmark AV to AVwith alternative rules for selling assets. The figure
shows the effects on AV of selling liquid assets first or last (left panel) and of selling assets propor-
tionally to liquidity or when minimizing the price impact of fire sales subject to a risk-based capital
requirement (right panel). Alternative AV series are normalized by the relative size of the raw AV
values at the beginning of the sample.

the index over time, the results again hardly change.

Sell proportional to liquidity. We now assume that banks sell assets proportionally
to asset liquidity (inversely proportional to price impact). Figure 8 (right panel) shows
that that under the assumption of selling proportional to asset liquidity, the level of AV is
roughly 40 percent lower on average but, in terms of the index over time, the results hardly
change.

Risk weights and liquidity. We now assume that banks minimize the price impact of
their fire sales subject to a realistically calibrated risk-based capital requirement; the de-
tails of the analysis are in Appendix E.4. Figure 8 (right panel) shows that AV under the
resulting trade-off between risk weights and liquidity is considerably smaller than the
benchmark (roughly 70 percent on average), but not as small as under the simple liquid
first strategy (left panel). However, as before, the profile of vulnerability over time retains
its shape.
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5.4 Multiple rounds of fire sales

We now study how AV changes when we iterate the one-shot fire-sale mechanism that
we used in our main specification. We think of the spillover losses that arise due to the
initial exogenous shock as a new endogenous “shock” f̂ that triggers a second round of
fire sales, given in equation (6). The spillover losses of this new round serve as a shock for
the next round, and so on. The multi-round AV is the sum of spillover losses in all rounds
as a fraction of initial system equity.15

We need to account for fire-sold assets leaving the system in the current round before
we can proceed to the next. Total assets inside the system decrease following each round
of fire sales. Once we explicitly allow assets at the beginning of the round, A1, and assets
at the end of the round, A2, to differ, the first-round fire-sale spillovers are:

AV1 =
1
e

1
w

1>A2MLM>ΛB∗A1MF1. (20)

The assumption that all fire-sold assets exit the system implies that A2 is given by the
following relation:

A21 = A11−ΛB∗A1MF1,

Using A2 as initial assets for the second round and the first-round fire-sale spillover losses
F2 = 1

w LM>ΛB∗A1MF1 as the new shock, we find second-round spillover losses:

AV2 = AV1 +
1
e

1
w

1>A3MLM>ΛB∗A2MF2.

We can iterate this process indefinitely with resulting fire-sale spillovers given by AV∞ =

∑∞
r=1 AVr. Figure 9 (left panel) shows howmultiple rounds of fire sales affect AV (normal-

ized by the relative size of the raw AV values at the beginning of the sample). We see that
convergence is achieved fairly quickly and that the shape of AV is preserved. Interestingly,
the fraction of convergedAV∞ not accounted for by the first roundAV1 is not constant over
time (Figure 9, right panel). There is a positive relationship between the effect of multiple

15Tepper and Borowiecki (2014) and Capponi and Larsson (2015) develop systemic risk measures based
on how close the banking system is to being explosive due to high leverage and asset concentration.
Braouezec and Wagalath (2017) study the fixed-point like equilibrium in a one-asset version of Greenwood
et al. (2015).
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Figure 9: Effect of multiple rounds of fire sales on AV. The figure shows the effects on AV of ad-
ditional rounds of fire sales until convergence (left panel) and the fraction of converged AV∞ not
accounted for by the first round AV1 (right panel). Alternative AV indices are normalized by their
relative size to raw benchmark AV at the beginning of the sample.

rounds and the level of AV. Among the factors of AV, the contribution of additional rounds
is highly correlated with leverage (0.82), adjustment speed (0.87), and illiquidity concen-
tration (0.84), but not with size (0.17). In terms of the behavior of the index over time,
however, the one-round benchmark captures the essence of vulnerability to fire sales.

5.5 Other robustness checks

We consider several additional robustness checks in the appendix and show that the qual-
itative behavior of AV remains the same; its evolution over time is essentially unchanged.
In Appendix E.1, instead of liquidity varying across assets according to NSFR weights,
we consider constant liquidity across assets; and, instead of liquidity varying across time
according to the wealth of potential buyers, we consider liquidity constant across time
and liquidity varying according to GDP. In Appendix E.2, instead of including the top 100
banks every quarter, we consider a balanced panel. In Appendix E.3, instead of a shock to
assets, we consider a shock that directly reduces the equity capital of banks.
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6 Comparison with other systemic risk measures

Since the financial crisis, a large number of systemic risk measures have been proposed
and analyzed. In this section, we compare AV, our measure based on systemic fire-sale
spillovers, to 35 other measures of aggregate systemic risk. We show that, besides AV,
only four other aggregate measures signal increasing systemic risk in the five years prior
to the crisis. We also compare SB, our measure of individual bank systemicness, to seven
other measures of bank-specific systemic risk. We then show that SB is an excellent pre-
dictor of five of these measures across horizons from one to five years, even controlling
for bank-specific characteristics and the current value of the other systemic risk measures
themselves. These results highlight the usefulness of our measures as early-warning in-
dicators. Comparing AV and SB to other measures is also a useful way to externally vali-
date them, as these other measures are constructed using data (mainly asset prices) and
methodologies that differ from the ones used in AV and SB.

6.1 Aggregate early-warning properties

Systemic risk does not emerge overnight. Identifying the steady build-up of systemic risk
is crucial to be able to respond to it — detecting trends and implementing policy actions
can take time. Figure 10 shows the time evolution of AV and 35 other prominent measures
of systemic risk from 2003q1 to 2009q1 taken from Bisias, Flood, Lo, and Valavanis (2012,
“BFLV”) and Giglio, Kelly, and Pruitt (2016). To make the growth rates easier to visual-
ize, all measures are normalized to 100 in 2003q1, plotted in a log-scale, and winsorized
for values lower than 50 and higher than 350. More details on these measures, including
how they are constructed and individual plots without any transformations, are in Ap-
pendix H.

The top two panels show that 31 out of the 35 measures fail to identify any build-up
of risk before the crisis. The top left panel shows in gray the 22 measures that signal no
increased systemic risk until mid-2007 or later. In contrast, the red line that shows AV has
a clear increasing trend. The top right panel shows in gray the nine measures that provide
neither a clear trend nor any discernible signal of the crisis. These measures may be better
suited to detect short-run bouts of systemic risk rather than lower frequency trends; they
appear rather noisy over the multi-year sample we consider.
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Figure 10: Comparison of AV to other systemic riskmeasures leading up to the crisis. Time-series
evolution ofAV and 35 systemic riskmeasures surveyed in Bisias et al. (2012) andGiglio et al. (2016)
between 2003q1 and 2009q1. All measures are normalized to 100 in 2003q1 and shown in a log-scale,
winsorized for values lower than 50 and higher than 350. The top left panel shows, in gray, the 22
measures that do not signal increased systemic risk until mid-2007 or later. The top right panel
shows, in gray, the nine measures that provide neither a clear trend nor any discernible signal of a
crisis. The bottom left panel shows the four systemic riskmeasures that have an increasing pre-crisis
trend similar to the one that AV displays. Appendix H shows plots identifying each measure and
gives details on how they were constructed.

43



The bottom left panel shows the four measures out of the 35 we consider that do have
a clear increasing trend like AV between 2003 and the crisis. Two of the measures, which
BFLV label “network analysis and systemic financial linkages” and “bank funding risk
and shock transmission,” are conceptually related to AV, as they are constructed to cap-
ture the interconnectedness of the financial system and banking system, respectively. The
“network analysis and systemic financial linkages” measure is the only one surveyed in
BFLV that has fire sales as a contributor to systemic risk; to the extent that other measures
capture fire sale spillovers, they do so in an indirect or implicit way without any men-
tion of them. The third measure, which BFLV label “costly asset price boom-bust-cycles,”
uses manymacroeconomic and financial series to predict asset price booms that have seri-
ous negative consequences for the real economy. For the 2003–2008 period, the asset price
boom predicted to adversely affect the real economy is in real estate. As discussed in Sec-
tion 3, residential real estate loans are also the most systemic class of assets in our analysis
and one of the main drivers of the increase in AV in this period, making AV also closely re-
lated to thismeasure.Additionally, BFLV classify this “costly asset price boom-bust-cycles”
measure as an ex-ante, early warning, macroprudential measure, all of which also apply
to AV. The fourth measure is the TED spread (three-month LIBOR minus three-month
T-bill rate), which is mainly an indicator of credit risk in the interbank market. While this
measure declines heading into 2007, it displays an overall low-frequency increasing trend
between 2003 and the crisis. It does not have as clear-cut a relation to AV as the three other
measures discussed above.

The takeaway is that only a minority of aggregate systemic risk measures are able to
capture the slow and steady buildup of risk that accrued before the crisis, highlighting the
usefulness of adding AV to the suite of existing measures. Of the four measures that do
successfully capture the buildup, three are constructed using different data and method-
ologies than AV yet are conceptually related to AV. We interpret this, first, as helping to
externally validate AV and, second, as additional evidence that the mechanism through
which systemic risk increased before the crisis is related to the fire-sale channel we con-
sider.

44



6.2 Predicting bank-level systemic risk

There is just one crisis in our sample, so any time-series analysis that reveals a consistent
buildup in vulnerability like the one in Figure 10 effectively relies on a single identifying
observation. Figure 10 also shows that the majority of measures react so late that they are
effectively measures of risk realization rather than ex-ante measures that are predictive of
risk. To more systematically analyze the early warning properties suggested by Figure 10,
we exploit the panel data underlying the construction of AV and show that individual
bank systemicness, SBit from equation (9), predicts other bank-level systemic risk mea-
sures proposed in the literature at one- to five-year-ahead horizons. For this exercise, we
use the sevenmeasures that, out of the 35 considered above, have a cross-sectional dimen-
sion and thus allow for bank-specific measures of risk: SRISK, ∆CoVaR, systemic expected
shortfall (SES), marginal expected shortfall (MES), systemic expected losses from a con-
tingent claims analysis (CCA), distressed insurance premium (DIP) and Co-Risk. The
aggregate versions of all of these are in the “late warning” category plotted in the top left
panel of Figure 10. Conversely, none of the “early warning” measures in the bottom left
panel have a cross-sectional dimension, so AV is the only measure that has early warning
properties both in the time-series and, as we shall see, in the cross-section. This makes our
framework unique in predicting not only when but also where systemic risk is building
up.

Some of the measures we aim to predict reflect not only the systemicness of a bank but
also its vulnerability to systemic risk. For example, SRISK is the expected capital shortfall
of a given financial institution conditional on a severely adverse scenario for the entire
financial system. SRISK can then be straightforwardly understood as a measure of vulner-
ability, since a large capital shortfall is associated with a higher risk of bankruptcy. There-
fore, we also study how individual bank vulnerability, VBit from equation (11), predicts
the other seven cross-sectional systemic risk measures.

In our framework, the distinction between systemicness (SB) and vulnerability (VB)
is more transparent. Table 6 shows the contemporaneous correlation between SB and VB,
which at 13 percent implies that the two measures contain different information. Table 6
also displays the contemporaneous correlations of SB and VB with the seven other mea-
sureswe consider. SB shows a positive correlationwith all othermeasures, which provides
further external validation that SB does indeed capture a notion of systemicness. It is most
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Table 6: Correlations among bank-level systemic risk measures. The table shows pairwise corre-
lations (pooling across time and banks) for bank systemicness SB, bank vulnerability VB, and the
seven bank-specific systemic risk measures from Bisias et al. (2012) and Giglio et al. (2016): SRISK,
∆CoVaR, systemic expected shortfall (SES), marginal expected shortfall (MES), systemic expected
losses from a contingent claims analysis (CCA), distressed insurance premium (DIP), and Co-Risk.
All correlations are computed using quarterly data. For each pair of measures, we compute the cor-
relation using all the observations for which both measures have non-missing data and that are
included in the sample used to construct our measure of systemicness SB (1999q3 to 2016q3 for the
top 100 banks by assets each quarter).

SRISK ∆CoVaR SES MES CCA DIP CoRisk SB VB
SRISK 1.00
∆CoVaR 0.17 1.00
SES 0.73 0.36 1.00
MES 0.37 0.50 0.52 1.00
CCA 0.39 0.34 0.57 0.24 1.00
DIP 0.23 0.37 0.72 0.28 0.68 1.00
CoRisk 0.09 0.22 0.06 0.13 0.07 0.06 1.00
SB 0.16 0.37 0.56 0.23 0.67 0.87 0.12 1.00
VB -0.01 0.06 0.04 -0.05 0.04 0.03 0.17 0.13 1.00

correlated with DIP (87 percent) and CCA (67 percent). VB, in contrast, is generally un-
correlated with the other measures. It has a correlation of 17 percent with Co-Risk and a
correlation of around zero with all other measures.

Predicting with fire-sale systemicness. To formally test for the ability of SB to predict
another bank specific systemic risk measure, we run the dynamic panel regression

OtherMeasureit+τ = β SBit + δOtherMeasureit + γ controlsit + νi + ηt + εit+τ, (21)

using our full sample of quarterly data spanning 1999q3 to 2016q3 (SBit is estimated with
rolling regressions that use data starting in 1996q1 as explained in Section 3). The variable
OtherMeasureit+τ is the value for bank i at time t+ τ of one of the seven systemic riskmea-
sures to be predicted, τ is the prediction horizon, νi are bank fixed effects, ηt are time fixed
effects, εit+τ is an error term assumed to be uncorrelatedwith the regressors, and controlsit

is a vector of bank-specific controls: conditional CAPM beta, stock returns, volatility of
stock returns, physical probability of default over the next year, conditional value-at-risk
at the 95 percent level, maturity mismatch between assets and liabilities, and number of
subsidiaries. These controls are meant to capture bank characteristics that could, in prin-
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ciple, affect the systemicness of each bank but are, broadly speaking, not directly related
to the specific fire-sale mechanism we consider.

Because regression (21) contains a lag of the dependent variable as a regressor, naive
estimators — like OLS and the within-groups estimator — can be biased. We use the sys-
tem GMM estimator of Arellano and Bover (1995) and Blundell and Bond (1998) which,
in addition to helping with the bias, has been shown to have high asymptotic efficiency
and excellent performance in finite samples (Kiviet et al., 2017). We assume that all re-
gressors are endogenously determined except for the time fixed effect, which is assumed
exogenous.16 Consistent with these assumptions, we use as GMM instruments for the dif-
ference equation all lags of order one and higher for the time fixed effect, and of order two
and higher for all other regressors. For the level equation, we use as instruments the first
differences of the respective instruments used for the difference equation. We “collapse”
the instrumentmatrix to keep the number of instruments small as recommended by Rood-
man (2009) and Kiviet et al. (2017) which, among other benefits, helps with the weak in-
struments problem. Appendix F.4 shows that the null hypothesis that the instruments are
valid cannot be rejected at high confidence levels by using the Arellano and Bond (1991)
test. The appendix also shows that results are robust to using various similar specifications
and that the system GMM estimator is between the OLS and the within-groups estima-
tor, consistent with the assumptions in Arellano and Bover (1995) and Blundell and Bond
(1998).

The coefficient of interest in regression (21) is β. Panel A of Table 7 shows the esti-
mated coefficients β̂ obtained by running the regression using prediction horizons τ ∈
{20, 16, 12, 8, 4} quarters (shown in the table as “5 yr ahead”, “4 yr ahead”, and so on)
and each of the systemic risk measures we consider for OtherMeasureit+τ. Each cell con-
tains an estimate β̂ obtained by running a different regression. Panel B of Table 7 shows
the estimated coefficients δ̂ on OtherMeasureit, the measure being predicted, lagged by τ

quarters.
Fire-sale systemicness SB significantly predicts SRISK, ∆CoVaR, SES,MES, and CCA at

all horizons (p-val < 0.01 except for CCA at the one-year horizon with p-val < 0.05). SB
predicts DIP only at the one-year horizon (p-val < 0.01) despite the twomeasures having

16A regressor xit is endogenously determined if, for all t, E[xitεit+s] = 0 for s ≥ 1 and E[xitεit+s] 6= 0 for
s ≤ 0. It is exogenous if, for all t, E[xitεit+s] = 0 for all s.
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Table 7: Predicting other systemic risk measures with bank systemicness. We run the predic-
tive dynamic panel regression OtherMeasureit+τ = β SBit + δOtherMeasureit + γ controlsit + νi +
ηt + εit+τ using the system GMM estimator of Blundell and Bond (1998) and quarterly data from
1999q3 to 2016q3. OtherMeasureit is one of the measures for bank i at time t from the set {SRISK,
∆CoVaR, SES, MES, CCA, DIP, Co-Risk}. SBit is our measure of bank-specific systemicness. The
vector controlsit contains bank-specific: conditional CAPM beta, stock returns, volatility of stock re-
turns, physical probability of default over the next year, conditional value-at-risk at the 95 percent
level, maturity mismatch between assets and liabilities, and number of subsidiaries. The regression
contains bank and time fixed effects νi and ηt. We run one regression for each combination of pre-
diction horizon τ ∈ {20, 16, 12, 8, 4} quarters (shown in the table as “5 yr ahead”, “4 yr ahead”, and
so on) and choice of OtherMeasureit, for a total of (5 horizons)× (7 measures) = 35 regressions.
Panel A reports the estimated coefficient β̂ on SBit and Panel B reports the estimated coefficient γ̂ on
OtherMeasureit, for each of these 35 regressions. The corresponding t-statistics are in parentheses,
computed using standard errors robust to heteroskedasticity and autocorrelation, clustered at the
bank level, and adjusted for small samples using the Windmeijer (2005) correction; significance:
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Results for all other regression coefficients are in Appendix F.1.

(1) (2) (3) (4) (5) (6) (7)
SRISK ∆CoVaR SES MES CCA DIP CoRisk

Panel A: Coefficient β̂ on systemicness (SBit)
5 yr ahead 3.24∗∗∗ 0.43∗∗∗ 5.34∗∗∗ 0.28∗∗∗ 0.04∗∗∗ -4.81 -0.00∗

(4.30) (3.29) (4.29) (3.52) (7.78) (-0.52) (-1.85)

4 yr ahead 3.95∗∗∗ 0.87∗∗∗ 6.90∗∗∗ 0.40∗∗∗ 0.08∗∗∗ -1.95 0.00
(5.01) (3.13) (5.00) (3.38) (7.42) (-0.17) (0.80)

3 yr ahead 3.25∗∗∗ 1.03∗∗∗ 6.49∗∗∗ 0.31∗∗∗ 0.09∗∗∗ 0.93 0.00
(5.08) (3.75) (5.00) (2.84) (4.88) (0.09) (0.68)

2 yr ahead 2.69∗∗∗ 0.86∗∗∗ 7.12∗∗∗ 0.42∗∗∗ 0.09∗∗∗ 5.09 0.00
(4.98) (4.08) (8.66) (4.23) (4.25) (0.87) (0.50)

1 yr ahead 2.54∗∗∗ 0.83∗∗∗ 5.73∗∗∗ 0.57∗∗∗ 0.06∗∗ 9.88∗∗∗ 0.00∗
(10.34) (5.35) (7.34) (5.71) (2.23) (6.19) (1.81)

Panel B: Coefficient δ̂ on OtherMeasureit
5 yr ahead -0.12∗ 0.17∗∗∗ -0.04 0.05 -0.07 0.50∗∗∗ -0.08∗∗

(-1.66) (3.48) (-0.37) (0.84) (-1.13) (4.71) (-2.19)

4 yr ahead -0.02 0.01 -0.04 -0.07 -0.19∗∗∗ 0.44∗∗ -0.00
(-0.36) (0.26) (-0.33) (-1.38) (-4.65) (2.22) (-0.08)

3 yr ahead 0.23∗∗∗ 0.14∗∗ 0.14∗ -0.07 -0.26∗∗∗ 0.32∗∗ 0.05
(7.50) (2.25) (1.66) (-1.20) (-8.69) (2.02) (1.34)

2 yr ahead 0.29∗∗∗ 0.26∗∗∗ 0.12∗ -0.13 0.03 0.16 -0.12∗
(6.97) (4.94) (1.73) (-1.46) (0.61) (1.28) (-1.65)

1 yr ahead 0.58∗∗∗ 0.44∗∗∗ 0.28∗∗∗ 0.12∗∗ -0.07 0.26∗∗∗ -0.13∗∗∗
(13.40) (15.78) (3.46) (2.29) (-1.18) (3.82) (-3.28)
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a high contemporaneous correlation (Table 6). SB does not predict Co-Risk at any of the
horizons considered.

The magnitude of β̂ is also of interest. SB as well as SRISK, ∆CoVaR, SES, CCA, and
DIP are measured in units of dollars divided by equity capital, making the interpretation
straightforward. For example, the number 3.24 in the first row (τ = 5y) and first column
(SRISK) implies that an increase in systemicness SB equal to 1 percentage point of equity
capital at time t is associated with an increase in SRISK of 3.24 percentage points five years
later.MES has units of return (it is the average return of a firmduring the 5%worst days for
themarketwithin the period)while Co-Risk is an elasticity (it is the percentage increase in
a bank’s CDS spread when all other banks experience a 1% increase in their CDS spread),
so one must adjust the interpretation accordingly. Whenever SB predicts SRISK, ∆CoVaR,
SES, MES, or DIP in a statistically significant way (with p-val < 0.05), the magnitude of
β̂ is also economically large. For CCA, despite the high significance, the magnitude of β̂ is
economically small.

Turning to the estimated coefficients δ̂ on OtherMeasureit (Panel B of Table 7), we see
that the measures themselves are much worse predictors of their future values than sys-
temicness SB. The coefficients δ̂ are significant in fewer instances or with a lower level of
significance, and generally smaller in magnitude, than the coefficients β̂ in Panel A. Over-
all, SB is a better predictor of the measures than lags of the measures themselves for all
cases except for DIP at the three to five year horizon. This confirms the notion that, in
contrast to SB, the other measures are more prone to capture risk realization rather than
ex-ante build-up of risk.

Predicting with fire-sale vulnerability. In Table 8, we repeat the predictability exercise
but use our measure of fire-sale vulnerability VBit from equation (11) instead of our mea-
sure of systemicness SBit when running regression (21). Overall, VB is an excellent pre-
dictor of SRISK, ∆CoVaR, SES, and MES. Compared to SB, VB does not predict MES as
strongly, and predicts neither CCA nor DIP.

Predictingwith fire-sale factors. In Appendix F.1, we examine the results of running the
same regression as equation (21) but replacing SB by its constituent factors from equation
(9). The first goal is to further understand what economic forces drive the good predictive
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Table 8: Predicting other systemic risk measures with bank vulnerability. We run the same pre-
dictive regressions as in Table 7 but replace bank systemicness, SBit, by bank vulnerability, VBit. We
only report the coefficient β̂ on VBit, with t-statistics in parentheses that are computed as in Table 7;
significance: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Results for all other regression coefficients are in
Appendix F.2.

(1) (2) (3) (4) (5) (6) (7)
SRISK ∆CoVaR SES MES CCA DIP CoRisk

5 yr ahead 40.29∗∗ 15.63∗∗∗ 79.88∗∗∗ 5.99∗∗∗ 0.09 2.20 -0.01∗∗∗
(2.48) (4.53) (2.68) (2.91) (0.91) (0.37) (-2.94)

4 yr ahead 38.95∗∗ 17.33∗∗∗ 95.25∗∗∗ 7.13∗∗∗ 0.12 -0.17 0.01
(2.37) (4.28) (2.78) (3.28) (0.95) (-0.02) (1.13)

3 yr ahead 25.12∗∗ 10.50∗∗∗ 91.60∗∗ 2.29∗ 0.09 3.22 0.02
(2.17) (2.93) (2.53) (1.71) (0.96) (0.32) (1.57)

2 yr ahead 10.20∗ 5.63∗∗ 97.35∗∗ 1.32 0.10 7.68 0.01
(1.87) (2.43) (2.12) (0.84) (1.03) (0.70) (0.77)

1 yr ahead 25.69∗∗∗ 8.39∗∗∗ 54.00∗∗ 6.59∗∗∗ 0.05 12.99 0.01
(3.22) (3.52) (2.09) (2.74) (0.81) (0.81) (0.78)

properties of our measure SB. The second goal is to assess the usefulness of the decom-
position in equation (9) and the overall measure SB. For example, if only one factor were
the single source of predictability, then one could dispense of SB in favor of that simpler
factor. We use logs to adapt the multiplicative decomposition of equation (9) to the ad-
ditive form of the regression and use log(sizeit), log(leverageit), log(illiquidity linkageit)

and log(adjustment speedit) as regressors. To allow for the possibility that the covariances
between factors, and not just their levels, drive predictability, we also include the six in-
teraction terms, e.g., log(sizeit) × log(leverageit).

We find that the different factors of SB drive predictability at different horizons and
that the predictive power of different factors varies across themeasures predicted. Overall,
when illiquidity linkage and its interactions with other factors are strong predictors, the
predictability tends to be at horizons of three years or less. In contrast, size, leverage, and
adjustment speed show predictive power at all horizons.

Regarding different factors’ predictive power across measures, SRISK and CCA are
predicted by all factors (with different factors important at different horizons). ∆CoVaR
loads most heavily on size. The predictability of SES comes from leverage and adjustment
speed. MES is predicted by size and illiquidity linkage. DIP and Co-Risk are not meaning-
fully predicted by any of the factors, consistent with their lack of predictability with SB.
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In terms of covariances, the only meaningful pattern we find is that if a factor other than
size is a good predictor of a particular measure at a particular horizon, then it is likely that
the interaction of the factor with size is also a good predictor of the same measure at the
same horizon.

6.3 Predicting actual recapitalization needs

We now use our measure of individual bank vulnerability, VBit, to predict a direct mea-
sure of realized bank-level vulnerability, the capital injections of the Troubled Asset Relief
Program (TARP) during the crisis. We view this exercise as an important complement to
the predictive panel regressions discussed above. First, it tests a different dimension of the
fire-sale framework — whether more vulnerable banks do indeed have worse outcomes,
as opposed to what banks contribute the most to systemic risk and do not necessarily
have poor outcomes themselves. Second, in contrast to fire-sale externalities and systemic
risk, the negative outcomes associated with vulnerability have a much closer empirical
proxy, providing a more direct empirical test of the framework (in this case, recapital-
ization through TARP is a proxy for equity needs during the crisis). Third, it allows us
to show that our framework is relevant not solely on average over the sample period we
consider but also during a crisis, when it matters most.

We use the econometric assumptions and specification in Brownlees and Engle (2016),
who conduct the same exercise of predicting capital needs but using their measure SRISK
as the predictor. For a given time τ, we run the cross-sectional regression

logCI∗i = ατ + βτ logVBiτ + γτ controlsiτ + εiτ, (22)

where logCI∗i are the log capital needs of bank i during 2008q4 and 2009q1, logVBiτ is
log vulnerability for bank i at time τ, controlsiτ is a vector of control variables and εiτ is a
Gaussian error term assumed to be uncorrelatedwith the regressors.We run two specifica-
tions. The first one includes no controls and the second one includes the controls SRISKiτ,
∆CoVaRiτ, MESiτ, volatility of stock returns, log assets, and equity capital fall between
2007q2 and 2008q2 as a share of assets.17 Brownlees and Engle (2016) further assume that

17Unlike Brownlees and Engle (2016), we do not include industry dummies because our sample consists
only of banks. See Brownlees and Engle (2016) for a more detailed discussion of the assumptions and inter-
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Table 9: Predicting TARP capital injections with bank vulnerability. We estimate the cross-
sectional equation logCI∗i = ατ + βτ logVBiτ + γτ controlsiτ + εiτ to evaluate whether the log
of vulnerability of bank i at time τ, logVBiτ , predicts the log of capital needs of bank i during
2008q4 and 2009q1, denoted by log CI∗i . The vector controlsiτ contains the control variables SRISKiτ ,
∆CoVaRiτ , MESiτ , volatility of stock returns, log assets, and equity capital fall between 2007q2 and
2008q2 as a share of assets, while εiτ is a Gaussian error term assumed to be uncorrelated with
the regressors. Capital needs, CI∗i , are unobserved. We measure them by TARP capital injections,
CIi, which we assume are carried out only if the capital need is positive, leading us to observe
the censored variable logCIi = max{logCI∗i , 0}. To estimate the coefficients, we run six versions
of the resulting Tobit regression (using τ ∈ {2004q4, 2005q4, 2006q4} with and without controls),
whichwe estimate consistently bymaximum likelihood. The t-statistics in parenthesis are computed
using standard errors robust to heteroskedasticity and autocorrelation; significance: ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

τ = 2004q4 τ = 2005q4 τ = 2006q4

(1) (2) (3) (4) (5) (6)
log VBiτ 13.69∗∗ 16.50∗∗ 6.84 21.39∗∗∗ 8.56 13.94∗∗

(2.48) (2.46) (1.09) (3.32) (1.43) (2.15)
SRISKiτ -0.16 -2.00∗ -1.21

(-0.20) (-1.70) (-0.82)
MESiτ 9.29 18.28∗∗ 14.37

(1.28) (2.31) (1.56)
∆CoVaRiτ 11.33∗ 6.53 2.37

(1.74) (1.08) (0.27)
Equity Falli (07q2-08q2) 415.75 303.83 128.80

(1.48) (1.15) (0.39)
Stock Voliτ -15.15 -6.18 -17.57

(-1.30) (-0.60) (-1.16)
log Assetsiτ -1.54 -4.42 -1.72

(-0.65) (-1.60) (-0.58)
Num Obs 100 38 100 40 100 40

capital needs are measured by TARP capital injections, CIi, which are carried out only if
the capital need is positive, leading the econometrician to observe the censored variable
logCIi = max{logCI∗i , 0}. Under these conditions, equation (22) is a Tobit regression that
can be estimated consistently by maximum likelihood.

Table 9 shows the estimated coefficients for τ ∈ {2004q4, 2005q4, 2006q4}, i.e. four,
three and two years ahead of 2008q4, when capital injections start. Each column shows
the results of a single cross-sectional regression. At the four-year horizon, τ = 2004q4, our
measure of bank vulnerability predicts capital injections, both with and without controls
(columns 1& 2, p-val < 0.05). In addition, themagnitude of the coefficient is economically

pretation of equation (22).
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large and similar in the two specifications: a one percent increase in bank vulnerability in
2004q4 is associated with either a 13.69 or a 16.50 percent increase in TARP injections de-
pending on whether controls are included. In terms of the controls, ∆CoVaR is weakly
significant (p-val < 0.1) while SRISK and MES are not significant. Columns 3 through
6 repeat the exercise for the three- and two-year-ahead horizons. Without controls, the
coefficient on (log) vulnerability VB is now insignificant. On the other hand, when con-
trols are included, the coefficient is significant and remains economically large. The other
measures are much less consistent in their ability to predict: the coefficient on SRISK is
uniformly negative, significantly so at the three-year horizon; the coefficient on MES is
significantly positive only at the three-year horizon; the coefficient on ∆CoVaR only at the
four-year horizon. Appendix F.3 shows that vulnerability VB also predicts the probability
of receiving a TARP injection by running a Probit regression with a TARP indicator as the
dependent variable.

7 Conclusion

In this paper, we study the factors that make the financial system vulnerable to fire sales.
We construct an index of aggregate vulnerability to fire sales of large bank holding com-
panies that decomposes additively into each bank’s “systemicness” as well as multiplica-
tively into aggregate versus cross-sectional factors that drive fire-sale vulnerability.

We use this framework to track vulnerability and its drivers over time. Our AV index
starts increasing quickly in 2004, before most other major systemic risk measures, and
reaches its peak in 2008. We identify the fire-sale specific factors of delevering speed and
illiquidity concentration, and find that they account for the majority of the pre-crisis in-
crease in AV. After the crisis, the index decreases equally dramatically, ending in late 2016
at roughly 40 percent of its initial 1999 level. This indicates that the theU.S. banking system
materially reduced its vulnerability to fire sales during the post-crisis period.

We show that it is possible to predict systemic risk both in the time-series and the cross-
section of banks. Individual banks’ contributions to AV are excellent five-year-ahead pre-
dictors of fivewidely usedmeasures of firm-specific systemic risk.Had they been available
at the time, ourmeasureswould have been useful early-warning indicators of risk building
up.
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Internet Appendix

A Comparison to Greenwood et al. (2015)

Greenwood et al. (2015) use an additive decomposition of AV into the sum of individual
banks’ systemicness,

AVt = ∑iSBit = ∑iγ
GLT
it λitb∗it

ait

et
, (23)

where γGLT
it is the Greenwood et al. (2015) connectedness of bank i:

γGLT
it = ∑k

(
∑i′ai′tmi′kt

) `k
wt

mikt

Substituting γGLT
it into (23) and separating aggregate terms from cross-sectional terms, we

arrive at our mulitplicative decomposition of AV already shown in equation (8),

AVt =
at

wt︸︷︷︸
rel. size

× (bt + 1) b
∗
t︸ ︷︷ ︸

leverage

× λt︸︷︷︸
adj. speed

× ∑iγitλ̃itβ
∗
itαit︸ ︷︷ ︸,

illiquidity concentration

where γit is our “illiquidity linkage” for bank i (from equation 9), which differs from
connectedness in Greenwood et al. (2015) by a factor (at/wt)−1:

γit = ∑km2
kt`kµikt =

(
at

wt

)−1

γGLT
it

We choose this multiplicative decomposition for four reasons: (i) it separates aggregate
determinants of fire-sale vulnerability from cross-sectional determinants (illiquidity con-
centration); (ii) it lends itself more readily to our focus on changes in AV over time since
it allows us to track the evolution of each multiplicative factor; (iii) it separates the fire-
sale specific factors of adjustment speed and illiquidity concentration from the size and
leverage factors, which are known to affect systemic risk for various reasons; and (iv) the
fire-sale specific factors empirically account for a large share of the variance of AV. Note
that the shock part is analogous to the expression in Greenwood et al. (2015), xGLT

it =

bitait∑kmikt fkt, where banks are simply assumed to return to their pre-shock leverage. The
difference in our framework is that the adjustment is partial and to a target, λit × b∗it, in-
stead of full and to pre-shock leverage, 1× bit−1.

Greenwood et al. (2015) discuss a partial adjustment model in their Appendix B.2, but
it features variation in neither b∗it nor λit.

IA-1



B Robustness checks for adjustment speed estimation

B.1 Construction of passive leverage
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Figure IA-1: Comparison of average estimated adjustment speed λt under different assumptions
for equity issuance (left panel) and for the persistence of dividends (right panel). The benchmark
includes all equity issuance and the previous eight-quarter average dividends in passive leverage.
The left panel compares to treating all equity issuance as active; the right panel treats all dividends
as active. Sample includes any bank that is ever in the top 500 by assets.

In our estimation of the adjustment speed λit, we need to construct a passive leverage
from which the bank adjusts to the observed actual leverage. We now consider the effects
of two adjustments we make in the construction of passive leverage. First, the benchmark
specification includes all equity issuance in passive leverage, emphasizing active leverage
adjustments through balance sheet contraction. For robustness, we consider the effect of
treating all equity issuance as active leverage adjustment (Figure IA-1, left panel). As ex-
pected, we see that this increases the average estimated adjustment speed but leaves the
evolution over time largely unaffected. Second, the benchmark specification uses the pre-
vious eight-quarter average dividends as the baseline dividend payment in period t. We
now consider treating all dividend payments as active leverage adjustments (Figure IA-1,
right panel). We see that these alternatives have negligible effects on the evolution of the
average estimated adjustment speed λt.

B.2 Choice of estimates from windows

From each window of our rolling estimation, we use the last period’s predicted bank-level
leverage target from step 1 and the bank-level average predicted adjustment speed from
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Figure IA-2: Comparison of average estimated adjustment speed λt (left panel) and average esti-
mated leverage target b

∗
t (right panel) under different treatment of the predicted values in each

estimation window. In the benchmark, the predicted bank-level adjustment speed is first averaged
within each window; the left panel compares to taking the predicted value for the last period of the
window. In the benchmark, the predicted leverage target is as of the last period of the window; the
right panel compares to first averaging the predicted bank-level leverage target. Sample includes
any bank that is ever in the top 500 by assets.

step 2. In Figure IA-2, we show the results from reversing this treatment. The left panel
compares the benchmark average step-2 adjustment speed λt to the version using the last
period’s predicted bank-level adjustment speed as well as the step-1 adjustment speed.
We see that the benchmark average step-2 adjustment speed is very similar to the step-
1 adjustment speed; in contrast, while the alternative average step-2 adjustment speed
shows a similar overall trend, it is considerably more noisy quarter-to-quarter. The right
panel of Figure IA-2 compares the benchmark average leverage target b

∗
t to the version

first averaging the bank-level predicted leverage target within each window. We see that
the two are very similar with the alternative slightly smoother, as expected.

B.3 Dynamic panel estimation

In step 1 of our adjustment speed estimation, we use a standard fixed-effects regression.
We now consider the effect on the estimated adjustment speed of using a system GMM
approach (Arellano and Bover, 1995; Blundell and Bond, 1998). In the difference equa-
tion, we instrument the change in passive leverage with one lag of passive leverage; in
the level equation, we instrument passive leverage with one lag of the change in passive
leverage. We see a level difference in the estimates, consistent with a finite-sample bias in
the fixed-effects regression. However, the evolution of the estimated adjustment speed is
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Figure IA-3: Comparison of adjustment speed from equation (15) using different estimation tech-
niques. The benchmark uses a standard fixed-effects regression; the alternative uses a system GMM
approach. Shaded areas indicate 95 percent confidence intervals computed using robust standard
errors clustered at the bank level (FE regression) and based on the robust VCE estimator of Arellano
and Bond (1991) (system GMM). Sample includes any bank that is ever in the top 500 by assets.

very similar under both approaches. Consistent with less precision due to the instrumen-
tal variable approach, the systemGMM estimates have larger confidence intervals and are
more volatile across the rolling windows — in particular in the run-up to the financial
crisis.
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C Mapping between asset classes and form FR Y-9C

Category Codes on FR Y-9C (http://www.federalreserve.gov/apps/reportforms/)

Total assets Entire sample bhck2170
Equity Starting 2014q1 bhck8274 or bhca8274

Up to 2013q4 bhck8274
Cash Entire sample bhck0081 + bhck0395 + bhck0397
U.S. Treasuries Starting 2008q1 bhck0211 + bhck1287 + bhcm3531

Up to 2007q4 bhck0211 + bhck1287 + bhck3531
Agency securities Starting 2008q1 bhck1289 + bhck1294 + bhck1293 + bhck1298 + bhcm3532

Up to 2007q4 bhck1289 + bhck1294 + bhck1293 + bhck1298 + bhck3532
Municipal securities Starting 2008q1 bhck8496 + bhck8499 + bhcm3533

2001q1 to 2007q4 bhck8496 + bhck8499 + bhck3533
Up to 2000q4 bhck8531 + bhck8535 + bhck8534 + bhck8538

Agency MBS Starting 2011q1 bhckg300 + bhckg304 + bhckg312 + bhckg316 + bhckk142 + bhckk150 + bhckg303
+ bhckg307 + bhckg315 + bhckg319 + bhckk145 + bhckk153 + bhckg379 +
bhckg380 + bhckk197

2009q2 to 2010q4 bhckg300 + bhckg304 + bhckg312 + bhckg316 + bhckg303 + bhckg307 + bhckg315
+ bhckg319 + bhckg379 + bhckg380 + (bhckg324 + bhckg328 + bhckg327 +
bhckg331 + bhckg382)/2

2008q1 to 2009q1 bhck1698 + bhck1703 + bhck1714 + bhck1718 + bhck1702 + bhck1707 + bhck1717
+ bhck1732 + bhcm3534 + bhcm3535

Up to 2007q4 bhck1698 + bhck1703 + bhck1714 + bhck1718 + bhck1702 + bhck1707 + bhck1717
+ bhck1732 + bhck3534 + bhck3535

Non-agency MBS Starting 2011q1 bhckg308 + bhckg320 + bhckk146 + bhckk154 + bhckg311 + bhckg323 + bhckk149
+ bhckk157 + bhckg381 + bhckk198

2009q2 to 2010q4 bhckg308 + bhckg320 + bhckg311 + bhckg323 + bhckg381 + (bhckg324 +
bhckg328 + bhckg327 + bhckg331 + bhckg382)/2

2008q1 to 2009q1 bhck1709 + bhck1733 + bhck1713 + bhck1736 + bhcm3536
Up to 2007q4 bhck1709 + bhck1733 + bhck1713 + bhck1736 + bhck3536
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Category Codes on FR Y-9C (http://www.federalreserve.gov/apps/reportforms/)

ABS & other debt securities Starting 2009q2 bhckc026 + bhckg336 + bhckg340 + bhckg344 + bhck1737 + bhck1742 + bhckc027
+ bhckg339 + bhckg343 + bhckg347 + bhck1741 + bhck1746 + bhckg383 +
bhckg384 + bhckg385 + bhckg386

2008q1 to 2009q1 bhckc026 + bhckg336 + bhckg340 + bhckg344 + bhck1737 + bhck1742 + bhckc027
+ bhckg339 + bhckg343 + bhckg347 + bhck1741 + bhck1746 + bhcm3537

2006q1 to 2007q4 bhckc026 + bhckg336 + bhckg340 + bhckg344 + bhck1737 + bhck1742 + bhckc027
+ bhckg339 + bhckg343 + bhckg347 + bhck1741 + bhck1746 + bhck3537

2001q1 to 2005q4 bhckb838 + bhckb842 + bhckb846 + bhckb850 + bhckb854 + bhckb858 + bhck1737
+ bhck1742 + bhckb841 + bhckb845 + bhckb849 + bhckb853 + bhckb857 +
bhckb861 + bhck1741 + bhck1746 + bhck3537

Up to 2000q4 bhck1754 + bhck1773 – (bhck0211 + bhck1287 + bhck3531 + bhck1289 + bhck1294
+ bhck1293 + bhck1298 + bhck3532 + bhck8531 + bhck8535 + bhck8534 +
bhck8538 + bhck1698 + bhck1703 + bhck1714 + bhck1718 + bhck1702 + bhck1707
+ bhck1717 + bhck1732 + bhck1709 + bhck1733 + bhck1713 + bhck1736 +
bhck8544 + bhck8550) + bhck3537

Equities & other securities Starting 2001q1 bhcka511 + bhcm3541
Up to 2000q4 bhck8544 + bhck8550

Residual securities Entire sample bhck1754 + bhck1773 + bhck3545 – all securities above
Repo and fed funds loans Starting 2002q1 bhdmb987 + bhckb989

1997q1 to 2001q4 bhck1350
Up to 1996q4 bhck0276 + bhck0277

Residential real estate loans Entire sample bhdm1797 + bhdm5367 + bhdm5368 + bhdmf606 + bhdmf607 + bhdmf611
Commercial real estate loans Starting 2007q1 bhckf158 + bhckf159 + bhdm1460 + bhckf160 + bhckf161 + bhdmf604 + bhdmf612

+ bhdmf613
Up to 2006q4 bhdm1415 + bhdm1460 + bhdm1480 + bhdmf604 + bhdmf612 + bhdmf613

Other real estate loans Starting 2007q1 bhck1410 – (bhdm1797 + bhdm5367 + bhdm5368 + bhckf158 + bhckf159 +
bhdm1460 + bhckf160 + bhckf161) + bhckf610 – (bhdmf606 + bhdmf607 +
bhdmf611 + bhdmf604 + bhdmf612 + bhdmf613)
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Category Codes on FR Y-9C (http://www.federalreserve.gov/apps/reportforms/)

Up to 2006q4 bhck1410 – (bhdm1797 + bhdm5367 + bhdm5368 + bhdm1415 + bhdm1460 +
bhdm1480) + bhckf610 – (bhdmf606 + bhdmf607 + bhdmf611 + bhdmf604 +
bhdmf612 + bhdmf613)

C & I loans Entire sample bhck1763 + bhck1764 + bhckf614
Consumer loans Starting 2011q1 bhckb538 + bhckb539 + bhckk137 + bhckk207 + bhckf615 + bhckf616 + bhckk199

+ bhckk210
2001q1 to 2010q4 bhckb538 + bhckb539 + bhck2011 + bhckf615 + bhckf616 + bhckf617
Up to 2000q4 bhck2008 + bhck2011

Lease financings Starting 2007q1 bhckf162 + bhckf163
Up to 2006q4 bhck2182 + bhck2183

Residual loans Entire sample bhck2122 + bhckf618 – all loans above
Residual assets Entire sample bhck2170 – all assets above

Note: We combine all categories under trading assets with the corresponding categories under securities and loans. We use
amortized cost for all securities reported as held-to-maturity and fair value for all securities reported as available-for-sale. We use
loans and trading assets on a consolidated basis where available. From 2009q2 to 2010q4, commercial MBS are not broken out into
agency MBS and non-agency MBS; we allocate them 50:50. Up to 2000q4 municipal securities include small amounts of MBS,
which are also included in agency MBS and non-agency MBS; we replace negative values of ABS and other debt securities with 0.
In the calculation of total assets, loans are adjusted by unearned income, but the loan breakdown is unadjusted; we replace
negative values of residual loans with 0.

D NSFR weights

We use price impacts `k based on the weights laid out under the Net Stable Funding Ratio (NSFR). The NSFR is fully de-
scribed in “Basel III: The Net Stable Funding Ratio,” issued in October 2014 by the Basel Committee on Banking Supervision.
When necessary, we refer to risk-weights assigned in “International Convergence of Capital Measurement and Capital Stan-
dards,” issued in June 2006 by the Basel Committee on Banking Supervision. Of course, some level of judgment is used
in assigning these weights, as our asset classes do not align perfectly with those described by the documentation on the
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NSFR. In addition, some of our asset categories contain assets with heterogeneous liquidity weights, whose relative magni-
tudes are not possible to determine using Y-9C data. Nevertheless, we believe the weights are broadly representative and are
sufficiently reasonable to illustrate the effect of heterogeneous liquidity.

We determine liquidity weights based on the NSFR as follows:

Asset class NSFR
hair-
cut

Notes

U.S. Treasuries 5% See section II.B, paragraph 37.
Repo & fed funds loans 10% We take the collateral underlying reverse repurchase agreements as the relevant assets in

determining liquidity weights (see section II.B, paragraph 32 for details). The collateral for most
repos is U.S. Treasuries (5% liquidity weight), followed by agency MBS (15% liquidity weight).

Agency MBS 15% See section II.B, paragraph 39.
Agency securities 15% Identical treatment to agency MBS.
ABS & other debt securities 35% A heterogeneous group of asset types with liquidity weights ranging from 5% to 100%. We

judge that portfolio weights are slanted towards more liquid assets and thus assign a liquidity
weight of 35%. See section II.B, paragraphs 37–42.

Equities & other securities 55% Non-financial, exchange-traded common equity shares receive a liquidity weight of 50%, while
all other equity received a liquidity weight of 100%. See section II.B, paragraphs 40 and 43.

Municipal securities 60% NSFR Liquidity weights depend on the duration of the residual maturity as well as the assigned
risk weight according to “International Convergence of Capital Measurement and Capital
Standards.” Weights range from 50% to 65%. See section II.B, paragraphs 40–41.

Residential real estate loans 60% NSFR liquidity weights for residential real estate loans depend on the residual maturity of the
loan as well as the assigned risk weight according to “International Convergence of Capital
Measurement and Capital Standards.” Weights range from 50% to 65%. See section II.B,
paragraphs 40–41.

Non-agency MBS 65% NSFR Liquidity weights depend on the duration of the residual maturity as well as the assigned
risk weight according to “International Convergence of Capital Measurement and Capital
Standards.” Weights range from 50% to 85%. See section II.B, paragraphs 40–42.
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Asset class NSFR
hair-
cut

Notes

C & I loans 75% NSFR liquidity weights for commercial real estate loans depend on the residual maturity of the
loan as well as the assigned risk weight according to “International Convergence of Capital
Measurement and Capital Standards.” Weights range from 50% to 85%. See section II.B,
paragraphs 40–42.

Commercial real estate loans 75% Identical treatment as C & I loans
Consumer loans 75% Identical treatment as C & I loans
Lease financings 75% Identical treatment as C & I loans
Other real estate loans 75% Identical treatment as C & I loans
Residual loans 75% Identical treatment as C & I loans
Residual assets 100% See section II.B, paragraph 43.
Residual securities 100% See section II.B, paragraph 43.
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E Robustness checks for spillovers calculation

E.1 Liquidity across assets and time
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Figure IA-4: Effect of different liquidity assumptions across assets and time.

For BHCs, the benchmark specification has liquidity of asset classes based on the Net
Stable Funding Ratio (NSFR) of the Basel III regulatory framework. Greenwood et al.
(2015) instead assume the same price impact for all assets, `k = ` for all k, and base the es-
timate on the liquidity of corporate bonds. Figure IA-4 (left panel) shows that AV is lower
under this assumption (since most bank assets are less liquid than corporate bonds).

In our benchmark, we adjust liquidity across time by the wealth wt of potential buyers
of fire-sold assets. We proxy for wt using total financial sector assets net of BHCs, respec-
tively. We now explore two alternatives. First, we can assume that the entire economy has
the capacity to absorb assets when they are fire-sold, instead of just the financial sector.
For this first scenario, we replace wt by nominal GDP in all periods t. Second, we can as-
sume that aggregate liquidity is constant across time periods. The price impact, expressed
in units of basis points per dollar sold, is therefore independent of the total size of finan-
cial markets or the economy. This is an extreme case and implies that wealth of potential
buyers remains constant, even in nominal terms.18 For this scenario, we set wt = const.
in all periods t. Figure IA-4 (right panel) shows the implications of the two scenarios.19

18This choice could make AV non-stationary, as the total assets of the banks we consider are presumably
co-integrated with total assets in the financial system or the economy.

19By construction, AV under all three scenarios is the same in 2011q3, the quarter we use to normalize
absolute asset liquidity, to be consistent with Greenwood et al. (2015).
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Figure IA-5: Comparison of benchmark AV to AV with a balanced panel of banks (left panel) and
with equity shocks (right panel).

There is a notable difference only for the constant liquidity scenario and only in the pre-
crisis period, where the growth in AV is faster than in the benchmark. This is due to the
fact that over this period, financial sector assets grew significantly faster than GDP. When
taking the entire economy as a reference for potential buyers of fire-sold assets, the po-
tential spillovers therefore grow faster as financial sector growth outpaces the rest of the
economy.

E.2 Balanced panel of institutions

In our main analysis, we include the top 100 banks every quarter that have leverage tar-
get estimates from Section 3, which may be different sets in each period. Figure IA-5, left
panel, displays AVwhenwe only keep banks that have been present throughout the entire
sample. Because some large, levered, and linked institutions are dropped from the sam-
ple, aggregate vulnerability decreases. The qualitative behavior of the measure remains
the same, with the curve essentially shifting downwards for all time periods and the run
up to the crisis becoming more pronounced.

E.3 Shocks to equity capital

Instead of considering a shock to the value of assets, we now consider a shock that exoge-
nously reduces the equity capital of banks. Conceptually, an equity shock is an appealing
way tomodel idiosyncratic financial distress at a particular firm or set of firms, while asset
shocks seem a better way to model market-wide distress, or disruptions in specific asset
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classes. Modeling capital losses large enough to put firms close to insolvency could be use-
ful when trying to evaluate whether firms should be designated as systemically important
financial institutions (SIFIs).20

Wecalibrate the equity shock to have the same average initial direct losses as our bench-
mark of a one percent uniform asset shock.21 To do so, we first compute the size git of the
equity shock needed so that each bank i has the same direct losses in each time period t
as when hit by a one percent asset shock:

git =
0.01× ait

eit
.

Then, we take the average of git across all banks i and all time periods t to arrive at a uni-
form equity shock g. The linearity of the framework is still preserved, so shocking each
bank’s equity capital separately and then adding the resulting fire-sale spillovers is equiv-
alent to shocking the equity capital of all banks simultaneously.

Figure IA-5, right panel, shows that, for the most part, equity shocks produce lower AV
than asset shocks. This is due to the fact that less levered banks also tend to be smaller and
have lower illiquidity linkage, therefore amplifying and transmitting less externalities.

E.4 Details on risk-based capital requirements

We capture the trade-off between risk weights and price impact in a simple model. Bank
i’s equity capital must exceed a fixed percentage of its risk-weighted assets

eit ≥ κaω
it = κ

K

∑
k=1

ωkmiktait, (24)

20For example, the Dodd-Frank act requires, among other standards, that a firm be designated as a SIFI
if, whenever it experiences “material financial distress or failure”, it “holds assets that, if liquidated quickly,
would cause a fall in asset prices and thereby significantly disrupt trading or funding in key markets or
cause significant losses or funding problems for other firms with similar holdings.” (Final rule and inter-
pretive guidance to Section 113 of the Dodd-Frank Wall Street Reform and Consumer Protection Act.) Our
framework with equity shocks embodies the spirit of this so-called “asset liquidation channel” quite well if
we interpret material financial distress as a severe depletion of equity capital. Note that the law starts with
the presumption of material finance distress or failure and does not require reasons or probabilities for that
event. Modeling equity shocks as exogenous is therefore very much in accordance with the law.

21While for each single bank there is a one-to-one correspondence between asset shocks and equity shocks,
it is not possible to construct a uniform system-wide equity shock (with the same shock magnitude for all
banks) that exactly reproduces the outcome of a uniform system-wide asset shock. This is because leverage
is not constant across firms. For a given asset shock, a more levered firm experiences higher initial capital
losses than a less levered firm. Hence, a uniform shock to equity capital with the same initial aggregate
losses causes larger capital declines in less levered firms.
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where κ ∈ (0, 1) is a fixed number picked by the regulator and ωk ≥ 0 is the risk weight
of asset k.

We maintain the partial adjustment model for leverage and the implied cash amount
x f

it, but assume that the bank wants to minimize the total price discount it suffers when
selling assets but still satisfy the capital requirement (equation (24)) and the budget con-
straint (that it has to raise x f

it). The price impact for bank i of selling a share ρikt ∈ [0, 1] of
its holdings in asset k is `kρiktmiktait basis points, since ρiktmiktait is the dollar amount sold
(before any price impact) and `k is the liquidity of the asset in units of basis points per
dollar. Hence, the loss to the bank due to the price impact is `k (ρiktmiktait)

2 dollars. The
amount of asset k remaining on the balance sheet is (1− ρikt)miktait dollars. The bank’s
optimization problem is then

min
ρikt

K

∑
k=1

`k (ρiktmiktait)
2 (25)

s.t. eit ≥ κ
K

∑
k=1

ωk (1− ρikt)miktait,

x f
it =

K

∑
k=1

ρiktmiktait −
K

∑
k=1

`k (ρiktmiktait)
2 (26)

0 ≤ ρikt ≤ 1 (27)

We calibrate riskweights ωk by using the “standardized approach” of capital requirements
in Basel III.22 For the tightness of the risk-based capital requirement we pick κ = 0.06,
which means banks must hold at least six percent of risk-weighted assets in equity. This
number corresponds to the minimum Tier 1 capital requirement from Basel III.

F Appendix to Section 6

F.1 Predictive dynamic panel regressions of other systemic risk mea-
sures using systemicness and its factors as predictors

22Appendix G shows the details. Most large banks use the “advanced approach” instead of the “stan-
dardized approach”, which usually produces lower overall risk-weights. We use the standardized approach
because implementing the advanced approach would require a much finer partition of asset classes in our
data.
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Table IA-1: SRISKit+τ = βSBit + δSRISKit + γcontrolsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

SBit 3.24∗∗∗ 3.95∗∗∗ 3.25∗∗∗ 2.69∗∗∗ 2.54∗∗∗

(4.30) (5.01) (5.08) (4.98) (10.34)
Rel. Assetsit 1.46∗∗ -0.40 -1.00∗∗ -1.20∗∗ -0.62∗∗

(2.16) (-0.93) (-2.27) (-2.44) (-2.35)
Rel. Leverageit 16.69∗∗∗ 14.35∗ 7.81 4.62 4.30

(2.68) (1.99) (1.33) (1.06) (1.63)
Illiquidity Linkit -9.74 5.38 9.48∗∗ 10.53∗∗∗ 6.24∗∗∗

(-1.62) (1.20) (2.23) (3.07) (3.36)
Adj speedit -8.99 -5.06 12.45∗∗ 20.78∗∗ 3.50

(-0.85) (-0.40) (2.06) (2.37) (0.75)
Assetsit × Levit 2.88∗∗∗ 2.36∗ 1.18 0.67 0.63

(2.78) (1.94) (1.32) (0.98) (1.49)
Assetsit × Illiqit -2.18∗ 0.70 1.66∗∗ 1.88∗∗∗ 1.08∗∗∗

(-1.75) (0.88) (2.20) (2.94) (2.93)
Levit × Illiqit 5.04∗∗ 3.02 0.90 0.18 0.33

(2.04) (1.16) (0.63) (0.15) (0.38)
Assetsit × λit -0.59 -0.15 2.46∗ 3.67∗∗ 0.37

(-0.42) (-0.07) (1.88) (2.26) (0.42)
Levit × λit -4.16 -3.63 -4.08 -3.36∗ -0.91

(-1.39) (-1.19) (-1.57) (-1.80) (-1.17)
λ it × Illiqit 4.48 3.93 3.57 1.66 -1.39

(0.59) (0.75) (1.12) (0.41) (-0.42)
SRISKit -0.12 -0.02 0.23∗∗∗ 0.29∗∗∗ 0.58∗∗∗ -0.01 0.09∗∗ 0.28∗∗∗ 0.33∗∗∗ 0.64∗∗∗

(-1.66) (-0.36) (7.50) (6.97) (13.40) (-0.11) (2.19) (12.19) (10.82) (20.26)
Stock Retit 0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00

(0.90) (-1.08) (0.59) (0.58) (-0.60) (0.81) (-0.92) (-0.19) (-1.04) (-1.22)
Stock Volit 0.30∗ 0.32 0.25 -0.06 -0.18 0.26 0.33 0.25 0.04 -0.10

(1.82) (1.63) (1.27) (-0.44) (-1.06) (1.49) (1.64) (1.25) (0.26) (-0.75)
CAPM betait -1.38∗∗ -1.71∗∗ -1.52∗ -0.44 0.11 -0.92∗∗ -1.20∗ -1.22 -0.40 0.08

(-2.46) (-2.22) (-1.75) (-0.85) (0.68) (-2.40) (-1.95) (-1.48) (-0.73) (0.48)
Prob Defit 2.07 2.78 3.52 1.37 2.48 5.24 1.58 -0.95 -6.87 -2.52

(0.26) (0.68) (1.12) (0.36) (0.28) (0.44) (0.30) (-0.44) (-1.30) (-0.30)
95% VaRit -1.64∗ -2.77∗ -2.43∗ -1.56 -1.14 -1.25∗ -2.47∗ -2.28∗ -1.81 -1.45

(-1.89) (-1.99) (-1.78) (-1.27) (-1.11) (-1.69) (-1.92) (-1.85) (-1.55) (-1.38)
Mat Mismatchit -0.50 -1.04 -2.27 -1.55 -1.90 -1.47 -1.71 -2.82 -1.89 -0.90

(-0.69) (-1.09) (-1.01) (-1.17) (-1.45) (-0.88) (-0.79) (-1.14) (-1.16) (-1.12)
# Subsit ×10−3 -0.87 0.02 0.08 0.58 0.00 -0.12 1.06∗∗ 1.12∗ 1.39∗∗∗ 0.72∗∗∗

(-1.44) (0.05) (0.19) (1.51) (0.01) (-0.20) (2.09) (1.79) (2.68) (3.62)
AR(2) p-value 0.96 0.61 0.74 0.52 0.93 0.79 0.83 0.74 0.90 0.59
Num Obs 1,453 1,675 1,904 2,139 2,283 1,448 1,666 1,892 2,125 2,269
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-2: ∆CoVaRit+τ = βSBit + δ∆CoVaRit + γcontrolsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

SBit 0.43∗∗∗ 0.87∗∗∗ 1.03∗∗∗ 0.86∗∗∗ 0.83∗∗∗

(3.29) (3.13) (3.75) (4.08) (5.35)
Rel. Assetsit 1.27∗∗∗ 0.97∗∗∗ 0.54∗∗∗ 0.38∗∗∗ 0.50∗∗∗

(7.49) (6.04) (3.94) (2.73) (4.16)
Rel. Leverageit -2.00 -0.93 0.43 -1.39 -1.76∗∗∗

(-1.44) (-0.94) (0.34) (-1.41) (-2.74)
Illiquidity Linkit -3.84∗∗ -0.83 0.95 2.08 0.48

(-2.36) (-0.54) (0.68) (1.59) (0.41)
Adj speedit -2.43 -2.55∗∗ -0.14 1.55 -2.56∗∗

(-1.42) (-2.17) (-0.11) (1.05) (-2.22)
Assetsit × Levit -0.27 -0.03 0.12 -0.21 -0.26∗∗∗

(-1.21) (-0.17) (0.53) (-1.22) (-2.62)
Assetsit × Illiqit -0.61∗∗ -0.09 0.29 0.55∗∗ 0.25

(-2.17) (-0.35) (1.39) (2.47) (1.17)
Levit × Illiqit 0.06 0.86 0.26 -0.17 -0.30

(0.13) (1.48) (0.39) (-0.25) (-0.72)
Assetsit × λit -0.16 -0.24 -0.15 -0.02 -0.53∗∗∗

(-0.49) (-0.92) (-0.68) (-0.07) (-2.85)
Levit × λit -0.06 -0.71 -0.75∗∗ -0.01 -0.18

(-0.13) (-1.40) (-2.18) (-0.04) (-0.67)
λ it × Illiqit 1.11 1.59 0.28 -1.91∗ -2.40∗∗∗

(0.64) (0.87) (0.21) (-1.85) (-2.94)
∆CoVaRit 0.17∗∗∗ 0.01 0.14∗∗ 0.26∗∗∗ 0.44∗∗∗ -0.12∗∗∗ -0.23∗∗∗ -0.01 0.11∗∗ 0.33∗∗∗

(3.48) (0.26) (2.25) (4.94) (15.78) (-3.05) (-5.17) (-0.24) (2.58) (12.49)
Stock Retit 0.00∗ 0.00∗∗ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(1.75) (2.07) (1.33) (1.42) (1.35) (1.38) (0.41) (0.11) (0.77) (0.92)
Stock Volit 0.04 -0.02 -0.01 -0.11∗∗∗ -0.08∗∗∗ 0.04 -0.05 -0.00 -0.10∗∗∗ -0.09∗∗∗

(0.94) (-0.56) (-0.28) (-3.30) (-2.69) (1.13) (-1.45) (-0.19) (-3.26) (-2.94)
CAPM betait -0.45∗∗∗ -0.19∗∗ -0.07 0.04 0.12∗ -0.39∗∗∗ -0.17∗∗ -0.10 0.05 0.11

(-4.26) (-2.35) (-0.99) (0.51) (1.96) (-4.30) (-2.08) (-1.25) (0.77) (1.61)
Prob Defit -1.31 -0.60 -0.55 1.66 2.61∗∗ -0.23 0.78 -1.16 2.76∗∗ 2.87∗∗

(-0.82) (-0.57) (-0.74) (1.61) (2.33) (-0.19) (0.67) (-1.41) (2.19) (2.43)
95% VaRit -0.81∗∗∗ -0.30∗ -0.52∗∗∗ -0.37∗ -0.10 -0.19 -0.13 -0.47∗∗∗ -0.17 -0.02

(-4.08) (-1.94) (-4.34) (-1.69) (-0.76) (-1.06) (-0.64) (-3.13) (-1.09) (-0.23)
Mat Mismatchit -0.68 -0.50 -0.49 -0.28 -0.98∗∗ -0.46 -0.87∗∗ -0.52 -0.51 -0.26

(-1.24) (-1.40) (-1.15) (-0.75) (-2.22) (-1.09) (-2.54) (-0.88) (-0.96) (-0.61)
# Subsit ×10−3 0.62∗∗ 1.00∗∗∗ 0.92∗∗ 0.94∗∗∗ 0.38∗ -0.61∗∗∗ -0.13 0.21 0.17 -0.09

(2.54) (2.76) (2.19) (2.75) (1.76) (-3.63) (-0.86) (0.93) (0.87) (-0.50)
AR(2) p-value 0.40 0.55 0.09 0.87 0.05 0.55 0.15 0.08 0.33 0.13
Num Obs 2,240 2,652 3,060 3,425 3,826 2,238 2,646 3,050 3,412 3,812
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-3: SESit+τ = βSBit + δSESit + γcontrolsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

SBit 5.34∗∗∗ 6.90∗∗∗ 6.49∗∗∗ 7.12∗∗∗ 5.73∗∗∗

(4.29) (5.00) (5.00) (8.66) (7.34)
Rel. Assetsit 0.93 1.96 0.25 -0.21 0.25

(0.81) (1.05) (0.17) (-0.15) (0.32)
Rel. Leverageit 25.85∗∗∗ 27.99∗∗∗ 29.96∗∗∗ 34.73∗∗∗ 24.38∗∗∗

(3.90) (4.20) (4.68) (3.33) (3.13)
Illiquidity Linkit 9.78 15.00∗ 17.12∗ 17.93 12.18∗

(1.29) (1.93) (1.89) (1.58) (1.77)
Adj speedit 19.21∗∗ -24.04∗ 7.38 7.87 -22.00∗∗

(2.17) (-1.82) (0.70) (0.53) (-2.16)
Assetsit × Levit 6.33∗∗∗ 7.10∗∗∗ 7.39∗∗∗ 7.76∗∗∗ 5.67∗∗∗

(5.18) (6.89) (5.37) (3.74) (3.40)
Assetsit × Illiqit 1.93 3.06∗ 3.75∗ 3.64 2.57∗

(1.17) (1.86) (1.89) (1.52) (1.75)
Levit × Illiqit 10.61 12.34 10.57 3.91 3.36

(1.26) (1.17) (1.18) (0.45) (0.45)
Assetsit × λit 5.20∗∗ -7.05∗ 1.06 1.88 -6.02∗∗

(2.24) (-1.86) (0.36) (0.51) (-2.08)
Levit × λit -3.35 -0.74 -5.18 0.27 9.21

(-0.51) (-0.08) (-0.60) (0.03) (1.39)
λ it × Illiqit 16.33 -11.68 6.62 10.93 -5.93

(1.66) (-0.76) (0.52) (0.77) (-0.64)
SESit -0.04 -0.04 0.14 0.12∗ 0.28∗∗∗ -0.08 0.01 0.12∗∗ 0.15∗∗ 0.43∗∗∗

(-0.37) (-0.33) (1.66) (1.73) (3.46) (-1.16) (0.15) (2.22) (2.45) (7.76)
Stock Retit 0.00 0.00 0.00 0.00 -0.00 0.00∗∗ 0.00 0.00∗ 0.00 -0.00

(1.32) (1.56) (1.44) (0.12) (-1.60) (2.56) (1.31) (1.84) (0.36) (-1.42)
Stock Volit 0.15 0.11 0.18 0.14 -0.20 0.12 0.30∗ 0.31 0.21 -0.11

(1.01) (0.64) (1.45) (0.33) (-0.53) (0.88) (1.84) (1.50) (1.25) (-0.34)
CAPM betait -1.00 -1.11∗ -1.10∗ -0.16 2.04 -0.11 -0.83 -0.70 -0.05 1.54

(-1.71) (-1.82) (-1.83) (-0.62) (1.45) (-0.16) (-1.44) (-1.08) (-0.08) (1.27)
Prob Defit 6.74 1.53 -9.21 -22.20 -39.54 7.76 -9.19 -1.37 -25.07∗∗∗ -57.95∗∗

(0.43) (0.08) (-1.20) (-1.08) (-1.32) (1.10) (-0.95) (-0.22) (-3.02) (-2.33)
95% VaRit 0.57 0.58 0.99 -1.61 0.40 1.49 1.95 1.12 0.10 1.05

(0.59) (0.55) (1.23) (-0.58) (0.44) (1.29) (1.46) (0.82) (0.06) (1.07)
Mat Mismatchit -0.33 -1.10 -2.68 -3.92 -1.02 -1.32 -3.52 -3.58 -4.11 -1.56

(-0.28) (-0.56) (-1.27) (-1.27) (-0.77) (-0.79) (-1.12) (-1.33) (-1.43) (-0.73)
# Subsit ×10−3 0.84∗ 1.06 0.43 0.17 0.20 0.46 -0.21 0.43 0.57 0.28

(1.84) (1.54) (1.21) (0.41) (0.59) (0.87) (-0.21) (0.45) (0.70) (0.57)
AR(2) p-value 0.24 0.18 0.41 0.19 0.20 0.20 0.06 0.21 0.26 0.36
Num Obs 550 646 719 724 732 550 646 719 724 732
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-4: MESit+τ = βSBit + δMESit + γcontrolsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

SBit 0.28∗∗∗ 0.40∗∗∗ 0.31∗∗∗ 0.42∗∗∗ 0.57∗∗∗

(3.52) (3.38) (2.84) (4.23) (5.71)
Rel. Assetsit 0.71∗∗∗ 0.21 0.12 0.05 0.06

(4.23) (1.61) (1.49) (0.55) (0.61)
Rel. Leverageit -0.31 -0.81 -0.46 -0.55 -0.36

(-0.33) (-0.92) (-0.58) (-0.70) (-0.58)
Illiquidity Linkit -3.53∗∗ -0.21 0.43 0.89 0.72

(-2.56) (-0.19) (0.57) (1.16) (0.76)
Adj speedit -2.50 -3.27 1.29 2.31∗ -1.41

(-1.14) (-1.14) (1.42) (1.77) (-1.54)
Assetsit × Levit 0.11 -0.06 -0.11 -0.14 -0.01

(0.69) (-0.38) (-0.88) (-1.14) (-0.05)
Assetsit × Illiqit -0.76∗∗∗ -0.07 0.14 0.23 0.17

(-2.78) (-0.39) (0.96) (1.42) (0.97)
Levit × Illiqit 1.37∗ 0.51 -0.59∗ -0.56∗∗ 0.30

(1.77) (0.93) (-1.83) (-2.19) (1.02)
Assetsit × λit -0.43 -0.39 0.40∗ 0.51∗∗ -0.38∗∗

(-1.11) (-0.87) (1.90) (2.14) (-2.10)
Levit × λit -0.53 -0.17 -0.89∗∗ 0.26 -0.13

(-0.97) (-0.36) (-2.18) (0.51) (-0.66)
λ it × Illiqit 0.24 0.89 1.84∗ 1.52 -1.46

(0.15) (0.54) (1.67) (1.42) (-1.36)
MESit 0.05 -0.07 -0.07 -0.13 0.12∗∗ 0.10∗ 0.01 0.01 0.00 0.20∗∗∗

(0.84) (-1.38) (-1.20) (-1.46) (2.29) (1.76) (0.15) (0.15) (0.02) (4.14)
Stock Retit -0.00 -0.00∗∗∗ -0.00 -0.00∗ -0.00∗∗∗ -0.00 -0.00∗∗∗ -0.00 -0.00∗ -0.00∗∗∗

(-0.15) (-4.59) (-1.22) (-1.70) (-2.94) (-0.03) (-4.04) (-0.73) (-1.70) (-3.19)
Stock Volit -0.03 0.08∗∗ 0.09∗∗ 0.06∗ -0.01 -0.03 0.06∗ 0.07∗ 0.04 -0.03

(-0.91) (2.57) (2.21) (1.72) (-0.15) (-0.98) (1.87) (1.84) (1.32) (-0.96)
CAPM betait 0.13 -0.21∗∗ -0.18 -0.00 0.13∗ 0.02 -0.14 -0.19∗ 0.02 0.18∗∗

(1.43) (-2.24) (-1.63) (-0.03) (1.78) (0.30) (-1.55) (-1.72) (0.30) (2.57)
Prob Defit -1.70∗ -0.40 1.53 -3.62∗∗ -4.09∗∗ -2.11 -1.22 0.08 -5.57∗∗∗ -4.11∗∗

(-1.92) (-0.37) (1.13) (-2.06) (-2.33) (-1.55) (-1.25) (0.06) (-4.51) (-2.38)
95% VaRit -0.30∗∗ -0.22 -0.00 -0.10 0.42∗∗∗ -0.34∗∗ -0.28∗∗ -0.06 -0.22 0.37∗∗∗

(-2.24) (-1.64) (-0.03) (-0.59) (3.10) (-2.33) (-2.53) (-0.45) (-1.35) (2.95)
Mat Mismatchit -0.25 -0.48 -0.64 -0.42 -0.15 -0.67∗∗∗ -0.79∗ -1.09∗∗∗ -0.75∗∗ -0.64∗∗∗

(-0.82) (-1.25) (-1.39) (-0.85) (-0.44) (-2.73) (-1.77) (-3.45) (-2.51) (-3.04)
# Subsit ×10−3 0.13 0.03 0.17∗∗ 0.22 0.11 -0.26∗∗ 0.07 0.02 0.13 0.11

(1.32) (0.23) (2.04) (1.65) (0.90) (-2.21) (0.60) (0.18) (1.30) (0.74)
AR(2) p-value 0.08 0.09 0.04 0.05 0.02 0.09 0.07 0.04 0.04 0.01
Num Obs 1,453 1,675 1,904 2,139 2,283 1,448 1,666 1,892 2,125 2,269
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-5: CCAit+τ = βSBit + δCCAit + γcontrolsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

SBit 0.04∗∗∗ 0.08∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 0.06∗∗

(7.78) (7.42) (4.88) (4.25) (2.23)
Rel. Assetsit 0.02∗∗ 0.01 -0.04∗∗∗ -0.05∗∗∗ -0.03∗∗∗

(2.24) (1.43) (-3.53) (-3.41) (-2.76)
Rel. Leverageit 0.32∗∗∗ 0.36∗∗∗ 0.13∗ 0.05 -0.08

(2.64) (3.30) (1.80) (0.47) (-1.20)
Illiquidity Linkit -0.06 0.08 0.45∗∗∗ 0.53∗∗∗ 0.43∗∗∗

(-0.91) (1.06) (3.81) (3.88) (3.13)
Adj speedit -0.32∗∗∗ -0.28∗ -0.13 0.13 0.30

(-2.83) (-1.71) (-1.14) (1.28) (1.52)
Assetsit × Levit 0.05∗∗ 0.06∗∗∗ 0.02∗∗ 0.01 -0.01

(2.55) (3.26) (2.02) (0.70) (-1.11)
Assetsit × Illiqit -0.01 0.02 0.08∗∗∗ 0.09∗∗∗ 0.07∗∗∗

(-0.88) (1.42) (3.67) (3.64) (3.15)
Levit × Illiqit 0.06∗ 0.06∗∗ 0.03 0.01 -0.01

(1.97) (2.37) (1.17) (0.54) (-0.29)
Assetsit × λit -0.05∗∗∗ -0.05∗∗ -0.03∗ 0.01 0.05

(-3.55) (-2.11) (-1.71) (1.00) (1.64)
Levit × λit -0.04 -0.05∗ -0.00 -0.02 0.01

(-1.04) (-1.78) (-0.25) (-0.96) (0.40)
λ it × Illiqit -0.03 -0.09 -0.15∗ -0.02 0.11

(-0.32) (-1.15) (-1.82) (-0.41) (1.53)
CCAit -0.07 -0.19∗∗∗ -0.26∗∗∗ 0.03 -0.07 -0.05 -0.16∗∗∗ -0.21∗∗∗ 0.09∗∗∗ -0.00

(-1.13) (-4.65) (-8.69) (0.61) (-1.18) (-0.70) (-8.73) (-10.14) (7.68) (-0.04)
Stock Retit 0.00 -0.00 0.00∗∗ -0.00 0.00∗ 0.00∗ 0.00 0.00∗ -0.00 0.00∗

(1.46) (-1.10) (1.99) (-0.70) (1.80) (1.88) (0.28) (1.82) (-0.75) (1.73)
Stock Volit -0.00 -0.00 -0.00∗ -0.00∗ 0.00 0.00 0.00 -0.00 -0.00∗ -0.00

(-0.06) (-0.48) (-1.88) (-1.75) (0.90) (0.02) (0.50) (-1.16) (-1.93) (-1.38)
CAPM betait -0.01 -0.01 -0.00 0.00 0.00 -0.01 -0.01∗ -0.00 0.01 0.01∗∗

(-1.09) (-1.64) (-1.65) (0.75) (1.09) (-0.97) (-1.82) (-0.87) (1.40) (2.14)
Prob Defit -0.08 0.00 0.11 0.01 0.08 0.04 0.07 0.10 0.00 0.10

(-0.80) (0.12) (1.35) (0.23) (0.98) (0.49) (1.31) (1.29) (0.02) (1.29)
95% VaRit -0.00 -0.02∗ -0.01∗ 0.00 0.00 -0.00 -0.01 -0.00 0.01 0.01∗

(-0.61) (-1.96) (-1.89) (0.36) (0.59) (-0.16) (-1.31) (-0.33) (1.21) (1.69)
Mat Mismatchit 0.02 -0.00 0.01 0.01 0.04 0.01 0.01 0.02 0.02 0.01

(1.31) (-0.03) (0.72) (0.60) (1.43) (0.55) (0.48) (1.46) (1.12) (0.46)
# Subsit ×10−3 -0.02∗ -0.01 0.02∗∗ 0.02 0.05∗∗ -0.02 0.01 0.07∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(-1.79) (-0.86) (2.17) (1.27) (2.20) (-1.65) (0.39) (3.86) (3.76) (4.87)
AR(2) p-value 0.77 0.80 0.54 0.54 0.40 0.74 0.73 0.59 0.68 0.64
Num Obs 2,814 3,235 3,624 3,820 4,034 2,809 3,226 3,612 3,806 4,020
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-6: DIPit+τ = βSBit + δDIPit + γcontrolsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

SBit -4.81 -1.95 0.93 5.09 9.88∗∗∗

(-0.52) (-0.17) (0.09) (0.87) (6.19)
Rel. Assetsit 9.99 9.43 5.99 4.90 2.97

(1.36) (1.54) (1.33) (1.08) (1.37)
Rel. Leverageit -2.30 -2.32 12.04 24.75 28.83

(-0.10) (-0.11) (0.79) (1.34) (1.24)
Illiquidity Linkit -18.26 -20.82 -8.87 5.77 6.71

(-0.37) (-0.50) (-0.28) (0.17) (0.34)
Adj speedit -54.03 -85.31 -77.79∗ -40.32 -38.44

(-1.64) (-1.54) (-1.66) (-1.32) (-1.50)
Assetsit × Levit 1.55 0.81 2.48 4.46 5.14

(0.42) (0.24) (1.00) (1.53) (1.37)
Assetsit × Illiqit -2.55 -2.61 0.00 1.94 1.66

(-0.33) (-0.40) (0.00) (0.38) (0.53)
Levit × Illiqit 7.56 3.91 2.00 2.08 4.45

(1.20) (0.78) (0.53) (0.64) (1.56)
Assetsit × λit -10.16∗ -14.21 -12.28∗ -7.27∗ -6.62∗

(-1.88) (-1.65) (-1.87) (-1.77) (-1.75)
Levit × λit 2.71 2.84 2.99 -2.42 -0.34

(0.49) (0.48) (0.69) (-1.34) (-0.25)
λ it × Illiqit -17.79 -10.93 -6.71 -9.01 -4.78

(-1.10) (-0.66) (-0.41) (-0.57) (-0.45)
DIPit 0.50∗∗∗ 0.44∗∗ 0.32∗∗ 0.16 0.26∗∗∗ 0.32∗∗∗ 0.33∗∗∗ 0.26∗∗∗ 0.17∗∗ 0.36∗∗∗

(4.71) (2.22) (2.02) (1.28) (3.82) (3.28) (4.66) (4.85) (2.22) (6.23)
Stock Retit 0.00 -0.00 0.00 0.00 -0.00 0.01∗ 0.00∗∗ 0.00∗∗ 0.00∗ 0.00

(1.38) (-1.16) (0.02) (0.28) (-0.68) (1.95) (2.05) (2.05) (1.69) (0.07)
Stock Volit 0.08 -0.06 -0.02 -0.07 -0.07 -0.45∗ -0.46∗ -0.01 0.01 -0.05

(0.25) (-0.30) (-0.12) (-0.30) (-0.50) (-1.68) (-1.87) (-0.04) (0.03) (-0.21)
CAPM betait 0.98 0.09 -0.74 -0.57 -0.08 1.35 -0.21 -1.16 -0.59 -0.07

(0.41) (0.09) (-0.81) (-0.45) (-0.22) (0.76) (-0.26) (-1.21) (-0.51) (-0.14)
Prob Defit -35.53 -7.65 -9.27 -10.38 -17.06 5.81 23.80∗ 8.54 -5.46 -16.74

(-1.34) (-0.77) (-0.97) (-0.76) (-0.84) (0.54) (1.74) (1.04) (-0.66) (-0.86)
95% VaRit 2.68 -0.66 -1.47 -3.88∗ -3.02 3.56 0.83 0.61 -3.73∗∗ -2.84

(0.75) (-0.48) (-1.63) (-1.95) (-1.20) (1.19) (0.54) (0.47) (-1.98) (-1.17)
Mat Mismatchit 9.04 6.74 -4.42 -4.49 -3.63 17.34 8.21 4.33 2.39 3.90

(1.53) (1.33) (-1.27) (-1.15) (-1.38) (1.44) (1.13) (1.32) (0.73) (1.54)
# Subsit ×10−3 2.04 0.08 2.31 6.96∗∗ 4.27 -0.86 -2.33 0.97 4.71 5.99

(0.56) (0.02) (0.63) (2.19) (0.90) (-0.16) (-0.37) (0.17) (0.75) (1.30)
AR(2) p-value 0.13 0.08 0.05 0.12 0.19 0.04 0.05 0.03 0.04 0.13
Num Obs 2,814 3,235 3,624 3,820 4,034 2,809 3,226 3,612 3,806 4,020
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-7: CoRiskit+τ = βSBit + δCoRiskit + γcontrolsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

SBit -0.00∗ 0.00 0.00 0.00 0.00∗

(-1.85) (0.80) (0.68) (0.50) (1.81)
Rel. Assetsit -0.00 0.00 0.00 -0.00 0.00

(-0.56) (1.02) (1.04) (-0.27) (0.34)
Rel. Leverageit -0.00 -0.00 0.00 0.00∗ 0.00

(-1.26) (-0.99) (0.61) (1.71) (1.05)
Illiquidity Linkit 0.00 -0.00 -0.00 0.00 -0.00

(1.05) (-1.07) (-0.61) (0.33) (-0.64)
Adj speedit 0.00 -0.00 -0.01∗ 0.00 0.00

(0.69) (-0.96) (-1.80) (0.06) (0.47)
Assetsit × Levit -0.00∗∗∗ -0.00 0.00 0.00 0.00∗∗∗

(-3.65) (-0.20) (0.27) (0.85) (3.28)
Assetsit × Illiqit 0.00 -0.00 -0.00 0.00 -0.00

(1.19) (-1.08) (-0.79) (0.31) (-0.51)
Levit × Illiqit -0.00∗∗∗ 0.00∗∗ 0.00 -0.00 0.00∗∗∗

(-4.01) (2.67) (0.08) (-0.72) (3.95)
Assetsit × λit 0.00 -0.00 -0.00 -0.00 0.00

(0.69) (-0.22) (-0.67) (-0.13) (0.40)
Levit × λit 0.00 0.00 0.00 0.00 -0.00∗∗

(1.69) (1.28) (1.05) (1.07) (-2.20)
λ it × Illiqit 0.00 0.00∗ 0.01 0.00 -0.00

(0.70) (1.77) (1.54) (0.64) (-0.65)
CoRiskit -0.08∗∗ -0.00 0.05 -0.12 -0.13∗∗∗ -0.06∗ -0.01 0.06∗ -0.11 -0.15∗∗∗

(-2.19) (-0.08) (1.34) (-1.65) (-3.28) (-2.02) (-0.22) (1.87) (-1.35) (-4.56)
Stock Retit 0.00 0.00∗∗ -0.00 0.00 0.00 0.00 0.00∗∗∗ -0.00 0.00 0.00

(0.46) (2.15) (-0.23) (0.76) (0.87) (0.65) (3.08) (-1.56) (0.18) (0.66)
Stock Volit 0.00 0.00 -0.00 0.00 0.00∗∗ 0.00 0.00 -0.00∗ 0.00 0.00∗∗∗

(0.53) (0.18) (-1.26) (1.21) (2.19) (0.55) (1.07) (-1.83) (1.26) (3.16)
CAPM betait -0.00∗∗ -0.00 0.00 -0.00 -0.00∗∗∗ -0.00∗∗∗ -0.00∗ 0.00 -0.00 -0.00∗∗∗

(-2.23) (-0.37) (0.88) (-1.42) (-4.01) (-3.21) (-1.96) (0.66) (-1.55) (-4.46)
Prob Defit -0.00 0.00 0.00 -0.01 -0.00 -0.00 -0.00 0.00 -0.01 -0.00

(-0.36) (0.18) (0.87) (-0.95) (-0.26) (-0.30) (-0.62) (0.67) (-1.02) (-1.04)
95% VaRit 0.00 0.00 0.00 -0.00 -0.00∗ 0.00 0.00 -0.00 -0.00 -0.00

(0.85) (0.52) (0.68) (-0.78) (-1.83) (1.33) (1.48) (-0.03) (-1.31) (-1.13)
Mat Mismatchit 0.00 -0.00 0.00 0.00 0.00 -0.00 0.00 -0.00 0.00 0.00

(1.68) (-0.96) (0.45) (0.90) (0.98) (-0.27) (0.29) (-0.31) (0.39) (1.68)
# Subsit ×10−3 0.00 -0.00 -0.00 0.00 -0.00 0.00 0.00 -0.00 0.00 -0.00

(1.65) (-0.64) (-0.43) (0.06) (-0.62) (0.68) (0.26) (-0.17) (0.52) (-0.22)
AR(2) p-value 0.70 0.06 0.01 0.27 0.55 0.68 0.07 0.01 0.36 0.55
Num Obs 551 641 729 774 824 546 632 717 760 810
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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F.2 Predictive dynamic panel regressions of other systemic risk mea-
sures using vulnerability as predictor

Table IA-8: SRISKit+τ = βVBit + δ SRISKit + γ controlsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

VBit 40.29∗∗ 38.95∗∗ 25.12∗∗ 10.20∗ 25.69∗∗∗
(2.48) (2.37) (2.17) (1.87) (3.22)

SRISKit -0.04 0.05 0.24∗∗∗ 0.29∗∗∗ 0.61∗∗∗
(-0.85) (1.51) (4.93) (4.54) (10.57)

Stock Retit 0.00 -0.00 0.00 -0.00 -0.00
(1.29) (-0.53) (1.48) (-0.19) (-0.44)

Stock Volit 0.28∗ 0.33∗ 0.24 -0.03 -0.12
(1.95) (1.80) (1.47) (-0.30) (-0.97)

CAPM betait -1.00∗∗ -1.14∗ -0.84 -0.22 0.07
(-2.30) (-1.73) (-1.24) (-0.53) (0.52)

Prob Defit -6.64∗ -8.23 -4.32 -6.42∗∗ -3.10
(-1.71) (-1.49) (-0.55) (-2.48) (-0.63)

95% VaRit -1.10 -1.79∗ -1.50 -1.22 -0.82
(-1.35) (-1.72) (-1.60) (-1.33) (-1.02)

Mat Mismatchit -2.59∗ -1.59 -0.85 -0.81 -1.59
(-1.75) (-1.36) (-0.61) (-0.78) (-1.25)

# Subsit ×10−3 0.66 1.40∗∗∗ 1.31∗∗∗ 1.33∗∗ 0.36
(1.03) (2.72) (2.82) (2.49) (1.16)

AR(2) p-value 0.76 0.74 0.76 0.55 0.70
Num Obs 1,453 1,675 1,904 2,139 2,283
t statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-9: CoVaRit+τ = βVBit + δCoVaRit + γ controlsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

VBit 15.63∗∗∗ 17.33∗∗∗ 10.50∗∗∗ 5.63∗∗ 8.39∗∗∗
(4.53) (4.28) (2.93) (2.43) (3.52)

∆CoVaRit 0.13∗∗ -0.03 0.15∗∗∗ 0.27∗∗∗ 0.45∗∗∗
(2.61) (-0.50) (3.01) (5.31) (14.59)

Stock Retit 0.00∗∗ 0.00∗∗∗ 0.00 0.00∗ 0.00∗
(2.52) (3.12) (1.25) (1.77) (1.73)

Stock Volit 0.02 -0.05 -0.01 -0.12∗∗∗ -0.09∗∗∗
(0.48) (-1.36) (-0.31) (-3.90) (-2.77)

CAPM betait -0.40∗∗∗ -0.16∗∗ -0.10 0.02 0.09∗
(-4.32) (-2.38) (-1.42) (0.28) (1.66)

Prob Defit -1.52 0.11 -2.94∗∗ 1.48 1.25
(-1.52) (0.10) (-2.41) (1.06) (0.90)

95% VaRit -0.60∗∗∗ -0.20 -0.35∗∗ -0.21 0.08
(-2.88) (-1.05) (-2.52) (-1.05) (0.73)

Mat Mismatchit -1.05∗ -1.01∗∗ -0.40 -0.28 -0.63∗∗
(-1.79) (-2.09) (-0.68) (-0.59) (-1.99)

# Subsit ×10−3 0.76∗∗ 1.60∗∗∗ 1.52∗∗∗ 1.46∗∗∗ 0.90∗∗∗
(2.47) (2.85) (2.95) (3.25) (3.02)

AR(2) p-value 0.27 0.30 0.20 0.75 0.04
Num Obs 2,240 2,652 3,060 3,425 3,826
t statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table IA-10: SESit+τ = βVBit + δ SESit + γ controlsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

VBit 79.88∗∗ 95.25∗∗ 91.60∗∗ 97.35∗∗ 54.00∗∗
(2.68) (2.78) (2.53) (2.12) (2.09)

SESit 0.10 0.15 0.32∗∗∗ 0.34∗∗∗ 0.47∗∗∗
(1.04) (1.23) (3.67) (3.69) (4.70)

Stock Retit 0.01∗∗ 0.01∗∗ 0.01∗ 0.00 -0.00
(2.21) (2.38) (2.04) (1.54) (-0.58)

Stock Volit -0.22 -0.08 -0.02 -0.04 -0.33
(-0.55) (-0.36) (-0.11) (-0.06) (-0.65)

CAPM betait 0.51 -1.05 -1.31 -0.43 1.81
(0.88) (-1.46) (-1.44) (-0.81) (1.33)

Prob Defit -1.77 -18.22 -25.24∗∗ -42.71 -62.37
(-0.07) (-0.79) (-2.08) (-1.37) (-1.69)

95% VaRit 2.88∗ 1.96 3.18∗∗ 0.33 2.48
(1.76) (1.25) (2.34) (0.12) (1.41)

Mat Mismatchit 1.58 5.16 -0.80 -0.41 4.64
(0.49) (0.83) (-0.19) (-0.10) (1.14)

# Subsit ×10−3 2.87∗∗ 3.69∗∗ 2.42∗ 2.45∗ 2.30∗∗
(2.44) (2.21) (1.99) (1.95) (2.42)

AR(2) p-value 0.45 0.09 0.28 0.30 0.41
Num Obs 550 646 719 724 732
t statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-11: MESit+τ = βVBit + δMESit + γ controlsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

VBit 5.99∗∗∗ 7.13∗∗∗ 2.29∗ 1.32 6.59∗∗∗
(2.91) (3.28) (1.71) (0.84) (2.74)

MESit 0.08 0.03 0.00 -0.08 0.19∗∗∗
(1.49) (0.44) (0.01) (-0.91) (3.53)

Stock Retit 0.00 -0.00∗∗∗ -0.00 -0.00∗ -0.00∗∗
(0.16) (-3.66) (-0.70) (-1.74) (-2.38)

Stock Volit -0.05∗ 0.04 0.06∗ 0.04 -0.02
(-1.67) (1.27) (1.74) (1.29) (-0.52)

CAPM betait 0.09 -0.16∗ -0.15 0.03 0.11
(1.10) (-1.92) (-1.54) (0.44) (1.64)

Prob Defit 1.15 -0.34 1.07 -4.40∗∗ -4.74∗∗∗
(0.72) (-0.29) (0.80) (-2.46) (-3.43)

95% VaRit -0.25∗ -0.06 0.12 -0.07 0.48∗∗∗
(-1.99) (-0.46) (0.95) (-0.42) (3.48)

Mat Mismatchit -0.68∗∗ -0.98∗∗ -0.68 -0.42 -0.23
(-2.61) (-2.05) (-1.54) (-0.90) (-0.62)

# Subsit ×10−3 0.12 0.13∗ 0.19∗∗ 0.26∗∗ 0.13
(1.25) (1.70) (2.55) (2.02) (1.48)

AR(2) p-value 0.07 0.08 0.04 0.05 0.02
Num Obs 1,453 1,675 1,904 2,139 2,283
t statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table IA-12: CCAit+τ = βVBit + δCCAit + γ controlsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

VBit 0.09 0.12 0.09 0.10 0.05
(0.91) (0.95) (0.96) (1.03) (0.81)

CCAit -0.09∗∗∗ -0.10∗∗ -0.19∗∗∗ 0.13∗∗ 0.01
(-3.36) (-2.13) (-3.06) (2.16) (0.06)

Stock Retit 0.00 -0.00 0.00∗ -0.00 0.00∗∗
(1.36) (-1.26) (1.89) (-1.03) (2.04)

Stock Volit 0.00 0.00 0.00 -0.00 0.00
(0.23) (0.12) (0.40) (-0.86) (0.97)

CAPM betait -0.01 -0.00∗ -0.01∗ -0.00 0.00
(-1.05) (-1.71) (-1.83) (-0.31) (0.65)

Prob Defit -0.11 -0.05 0.08 -0.02 0.07
(-1.08) (-0.93) (0.88) (-0.49) (0.74)

95% VaRit -0.00 -0.01 -0.00 0.01 0.01
(-0.55) (-1.25) (-0.22) (0.86) (0.84)

Mat Mismatchit 0.03 0.04 0.06 0.06∗ 0.04
(1.48) (1.35) (1.48) (1.68) (1.32)

# Subsit ×10−3 -0.01 0.01 0.03∗∗∗ 0.03∗∗∗ 0.07∗∗∗
(-0.65) (0.89) (2.99) (2.69) (2.78)

AR(2) p-value 0.74 0.70 0.54 0.70 0.53
Num Obs 2,814 3,235 3,624 3,820 4,034
t statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-13: DIPit+τ = βVBit + δDIPit + γ controlsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

VBit 2.20 -0.17 3.22 7.68 12.99
(0.37) (-0.02) (0.32) (0.70) (0.81)

DIPit 0.47∗∗∗ 0.42∗∗∗ 0.36∗∗∗ 0.30∗∗∗ 0.54∗∗∗
(2.82) (5.73) (3.68) (2.95) (17.09)

Stock Retit 0.00 -0.00∗ 0.00 0.00 -0.00
(1.26) (-1.78) (0.86) (0.86) (-0.97)

Stock Volit 0.20 0.15 0.06 -0.03 -0.00
(0.56) (0.60) (0.51) (-0.12) (-0.02)

CAPM betait 0.76 -0.02 -1.15 -1.09 -0.57
(0.39) (-0.02) (-1.23) (-0.73) (-0.94)

Prob Defit -35.24 -14.08 -14.16 -15.63 -22.40
(-1.35) (-1.05) (-1.42) (-1.01) (-1.01)

95% VaRit 2.74 -0.56 -1.50 -3.27∗∗ -2.80
(0.67) (-0.25) (-1.30) (-2.22) (-1.40)

Mat Mismatchit 5.87 5.32∗ -4.65 -4.38 -1.04
(1.64) (1.84) (-0.93) (-0.80) (-0.37)

# Subsit ×10−3 0.14 -1.41 -1.89 4.64 4.71
(0.03) (-0.19) (-0.21) (0.69) (0.96)

AR(2) p-value 0.10 0.06 0.04 0.05 0.11
Num Obs 2,814 3,235 3,624 3,820 4,034
t statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table IA-14: CoRiskit+τ = βVBit + δCoRiskit + γ controlsit + νi + ηt + εit+τ

(1) (2) (3) (4) (5)
τ = 20q τ = 16q τ = 12q τ = 8q τ = 4q

VBit -0.01∗∗∗ 0.01 0.02 0.01 0.01
(-2.94) (1.13) (1.57) (0.77) (0.78)

CoRiskit -0.08∗∗ -0.00 0.06 -0.13∗ -0.13∗∗
(-2.23) (-0.01) (1.65) (-1.76) (-2.74)

Stock Retit 0.00 0.00∗ -0.00 0.00 0.00
(0.65) (1.95) (-0.25) (1.02) (0.89)

Stock Volit 0.00 0.00 -0.00 0.00 0.00∗
(0.95) (1.10) (-1.19) (1.17) (1.96)

CAPM betait -0.00∗∗∗ -0.00 0.00 -0.00 -0.00∗∗∗
(-3.19) (-1.12) (1.13) (-1.44) (-3.30)

Prob Defit -0.00 -0.00 0.00 -0.01 -0.00
(-0.84) (-0.60) (0.72) (-0.97) (-0.56)

95% VaRit 0.00 0.00 0.00 -0.00 -0.00∗∗
(0.80) (0.08) (0.74) (-0.45) (-2.51)

Mat Mismatchit 0.00∗∗ -0.00 -0.00 0.00 0.00
(2.23) (-0.82) (-1.14) (0.37) (0.21)

# Subsit ×10−3 0.00 -0.00 -0.00 0.00 -0.00
(0.64) (-0.81) (-0.74) (0.23) (-0.67)

AR(2) p-value 0.69 0.06 0.00 0.30 0.56
Num Obs 551 641 729 774 824
t statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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F.3 Probit regression of TARP injections on indirect vulnerability

Table IA-15: Probit regression 1TARPi = ατ + βτ logVBiτ + γτ controlsiτ + εiτ

τ = 2004q4 τ = 2005q4 τ = 2006q4

log VBiτ 0.66∗∗ 1.89∗∗∗ 0.32 3.19∗∗∗ 0.43 1.40∗
(2.27) (2.61) (1.01) (3.04) (1.31) (1.81)

SRISKiτ -0.12 -0.55∗∗ -0.17
(-0.53) (-2.00) (-0.89)

MESiτ 1.07 2.98∗∗ 1.50
(1.38) (2.35) (1.56)

∆CoVaRiτ 1.45∗ 1.05 0.40
(1.91) (1.43) (0.46)

Equity Falli (07q2-08q2) 61.03∗ 52.35 25.33
(1.77) (1.25) (0.72)

Stock Voliτ -1.64 -0.94 -1.58
(-1.42) (-0.75) (-1.09)

log Assetsiτ -0.24 -0.91∗∗ -0.29
(-0.76) (-2.15) (-0.88)

Num Obs 100 38 100 40 100 40
t statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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F.4 Robustness of predictive regressions

Table IA-16

Pooled OLS Fixed Effects Dynamic Panel

SBit 2.33∗∗∗ 2.07∗∗∗ 2.23∗∗∗ 5.52∗∗∗ 5.15∗∗∗ 5.23∗∗∗ 4.90∗∗∗ 5.12∗∗∗ 4.92∗∗∗ 2.90∗∗∗ 3.25∗∗∗
(9.25) (6.72) (6.33) (4.55) (4.18) (4.18) (3.85) (4.61) (4.18) (3.45) (5.08)

SRISKit 0.37∗∗∗ 0.39∗∗∗ 0.17∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.16∗∗∗ 0.23∗∗∗
(7.29) (7.38) (3.85) (4.05) (4.18) (7.21) (7.50)

Stock Retit -0.00 0.00 0.00 0.00
(-0.69) (0.23) (0.45) (0.59)

Stock Volit 0.09∗ 0.19 0.20 0.25
(1.73) (1.29) (1.16) (1.27)

CAPM betait -0.23∗∗ -0.94 -1.18 -1.52∗
(-1.99) (-1.48) (-1.54) (-1.75)

Prob Defit -3.27 21.81∗∗∗ 15.09∗∗∗ 3.52
(-0.69) (3.24) (4.37) (1.12)

95% VaRit -0.90∗∗∗ -1.20 -1.39 -2.43∗
(-4.01) (-1.43) (-1.29) (-1.78)

Mat Mismatchit -0.04 -2.91 -2.41 -2.27
(-0.34) (-1.18) (-1.13) (-1.01)

# Subsit ×10−3 -0.07 -0.05 -0.00 0.08
(-0.48) (-0.09) (-0.00) (0.19)

Adj. R2 0.19 0.36 0.37 0.29 0.38 0.33 0.42 0.41 0.45
AR(2) p-value 0.55 0.74
FE (Bank,Time) N, N N, N N, N Y, N Y, Y Y, N Y, Y Y, Y Y, Y Y, Y Y, Y
Num Obs 2,069 1,940 1,904 2,069 2,069 1,940 1,940 2,029 1,904 1,940 1,904
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-17

Pooled OLS Fixed Effects Dynamic Panel

SBit 1.37∗∗∗ 0.94∗∗∗ 0.80∗∗∗ 0.84∗∗∗ 0.47∗∗∗ 0.92∗∗∗ 0.50∗∗∗ 0.48∗∗∗ 0.50∗∗∗ 1.37∗∗∗ 1.03∗∗∗
(14.57) (9.35) (6.88) (6.51) (4.62) (5.59) (4.15) (3.98) (3.58) (4.27) (3.75)

∆CoVaRit 0.32∗∗∗ 0.39∗∗∗ -0.24∗∗∗ -0.27∗∗∗ -0.27∗∗∗ 0.19∗∗∗ 0.14∗∗
(17.17) (19.52) (-12.61) (-11.11) (-9.30) (3.47) (2.25)

Stock Retit 0.00 0.00 0.00 0.00
(1.61) (0.98) (0.67) (1.33)

Stock Volit -0.05∗∗ 0.05∗∗ 0.07∗∗∗ -0.01
(-2.11) (2.50) (2.94) (-0.28)

CAPM betait 0.15∗∗∗ -0.15∗∗ -0.09 -0.07
(3.35) (-2.19) (-1.30) (-0.99)

Prob Defit -2.49∗∗ 0.34 0.06 -0.55
(-2.55) (0.37) (0.09) (-0.74)

95% VaRit -0.72∗∗∗ -0.38∗∗∗ -0.15∗ -0.52∗∗∗
(-7.77) (-2.69) (-1.82) (-4.34)

Mat Mismatchit -0.32∗∗∗ 0.21 0.21 -0.49
(-3.64) (0.77) (0.96) (-1.15)

# Subsit ×10−3 0.07 -0.08 -0.05 0.92∗∗
(1.36) (-1.13) (-0.63) (2.19)

Adj. R2 0.15 0.25 0.31 0.03 0.61 0.08 0.64 0.61 0.64
AR(2) p-value 0.06 0.09
FE (Bank,Time) N, N N, N N, N Y, N Y, Y Y, N Y, Y Y, Y Y, Y Y, Y Y, Y
Num Obs 3,141 3,141 3,060 3,141 3,141 3,141 3,141 3,060 3,060 3,141 3,060
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-18

Pooled OLS Fixed Effects Dynamic Panel

SBit 7.03∗∗∗ 6.71∗∗∗ 6.52∗∗∗ 4.32∗∗ 4.04∗∗ 2.25∗∗ 2.17∗∗ 4.30∗∗ 2.10∗∗∗ 6.06∗∗∗ 6.49∗∗∗
(12.90) (7.98) (7.44) (2.64) (2.34) (2.77) (2.53) (2.52) (2.92) (4.17) (5.00)

SESit 0.16∗∗∗ 0.16∗∗∗ -0.11∗∗∗ -0.11∗∗∗ -0.05 0.22∗∗∗ 0.14
(3.05) (2.76) (-8.34) (-7.64) (-0.84) (3.63) (1.66)

Stock Retit 0.01∗∗∗ 0.00∗ 0.00 0.00
(4.33) (1.85) (1.56) (1.44)

Stock Volit 0.22∗ 0.16 0.14 0.18
(1.95) (0.69) (0.52) (1.45)

CAPM betait -1.90∗∗∗ -1.04 -1.23∗ -1.10∗
(-4.31) (-1.54) (-1.76) (-1.83)

Prob Defit 8.20 15.58 13.63 -9.21
(0.76) (1.68) (0.69) (-1.20)

95% VaRit -0.36 -0.80 -0.30 0.99
(-0.94) (-0.77) (-0.36) (1.23)

Mat Mismatchit -0.83 -8.06∗∗ 7.64 -2.68
(-0.79) (-2.09) (1.62) (-1.27)

# Subsit ×10−3 0.36∗∗ 0.30 -2.05∗∗ 0.43
(2.08) (0.56) (-2.20) (1.21)

Adj. R2 0.58 0.62 0.64 0.12 0.30 0.07 0.23 0.32 0.26
AR(2) p-value 0.34 0.41
FE (Bank,Time) N, N N, N N, N Y, N Y, Y Y, N Y, Y Y, Y Y, Y Y, Y Y, Y
Num Obs 973 747 719 973 973 747 747 933 719 747 719
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-19

Pooled OLS Fixed Effects Dynamic Panel

SBit 0.58∗∗∗ 0.42∗∗∗ 0.36∗∗∗ 0.65∗∗∗ 0.18 0.73∗∗∗ 0.25∗∗ 0.23∗∗ 0.29∗∗∗ 0.08 0.31∗∗∗
(8.34) (5.45) (3.73) (3.75) (1.36) (4.67) (2.41) (2.30) (3.80) (0.76) (2.84)

MESit 0.28∗∗∗ 0.22∗∗∗ 0.02 -0.02 -0.07 0.00 -0.07
(12.38) (5.67) (0.58) (-0.57) (-1.25) (0.07) (-1.20)

Stock Retit 0.00 -0.00 -0.00 -0.00
(1.37) (-0.14) (-1.19) (-1.22)

Stock Volit -0.09∗∗∗ 0.11∗∗∗ 0.13∗∗∗ 0.09∗∗
(-3.97) (4.09) (3.59) (2.21)

CAPM betait 0.33∗∗∗ -0.25∗∗ -0.25∗∗ -0.18
(5.56) (-2.60) (-2.37) (-1.63)

Prob Defit 0.64 1.19 1.95 1.53
(0.34) (1.23) (1.45) (1.13)

95% VaRit 0.15∗ -0.30∗∗ -0.25∗∗ -0.00
(1.66) (-2.55) (-2.16) (-0.03)

Mat Mismatchit -0.50∗∗∗ -0.16 -0.19 -0.64
(-8.75) (-0.74) (-0.86) (-1.39)

# Subsit ×10−3 0.04 -0.17∗∗ -0.12∗ 0.17∗∗
(0.86) (-2.45) (-1.81) (2.04)

Adj. R2 0.09 0.17 0.20 0.03 0.63 0.04 0.65 0.65 0.67
AR(2) p-value 0.03 0.04
FE (Bank,Time) N, N N, N N, N Y, N Y, Y Y, N Y, Y Y, Y Y, Y Y, Y Y, Y
Num Obs 2,069 1,940 1,904 2,069 2,069 1,940 1,940 2,029 1,904 1,940 1,904
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-20

Pooled OLS Fixed Effects Dynamic Panel

SBit 0.09∗∗∗ 0.10∗∗∗ 0.10∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.08∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.08∗∗∗ 0.09∗∗∗ 0.09∗∗∗
(12.42) (9.21) (8.13) (4.35) (4.21) (5.02) (4.89) (3.91) (4.27) (4.15) (4.88)

CCAit -0.17∗∗∗ -0.22∗∗∗ -0.31∗∗∗ -0.30∗∗∗ -0.29∗∗∗ -0.26∗∗∗ -0.26∗∗∗
(-3.08) (-3.84) (-6.01) (-6.14) (-6.54) (-4.87) (-8.69)

Stock Retit 0.00 0.00∗ 0.00∗∗ 0.00∗∗
(0.33) (1.85) (2.00) (1.99)

Stock Volit -0.00 0.00 -0.00 -0.00∗
(-1.35) (1.02) (-0.01) (-1.88)

CAPM betait -0.00 -0.01∗∗ -0.00∗ -0.00
(-0.35) (-2.09) (-1.79) (-1.65)

Prob Defit 0.07∗∗ 0.09 0.07 0.11
(2.07) (1.03) (1.18) (1.35)

95% VaRit 0.00 -0.01 -0.01 -0.01∗
(0.23) (-1.34) (-1.64) (-1.89)

Mat Mismatchit -0.00 0.01 0.01 0.01
(-0.00) (0.78) (0.50) (0.72)

# Subsit ×10−3 0.01∗∗∗ -0.01 -0.01 0.02∗∗
(2.64) (-1.53) (-0.55) (2.17)

Adj. R2 0.48 0.50 0.52 0.11 0.14 0.20 0.22 0.16 0.23
AR(2) p-value 0.55 0.54
FE (Bank,Time) N, N N, N N, N Y, N Y, Y Y, N Y, Y Y, Y Y, Y Y, Y Y, Y
Num Obs 4,670 4,670 3,624 4,670 4,670 4,670 4,670 3,624 3,624 4,670 3,624
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-21

Pooled OLS Fixed Effects Dynamic Panel

SBit 41.89∗∗∗ 3.51 4.67 5.81 5.86 4.76 4.68 5.89 4.40 3.40 0.93
(17.42) (1.24) (1.51) (1.46) (1.45) (0.64) (0.60) (1.26) (0.51) (0.41) (0.09)

DIPit 0.85∗∗∗ 0.76∗∗∗ 0.06 0.06 0.08 0.28∗∗∗ 0.32∗∗
(20.04) (12.80) (0.31) (0.34) (0.42) (2.74) (2.02)

Stock Retit 0.00 0.00∗∗ 0.00∗∗ 0.00
(0.75) (2.14) (2.07) (0.02)

Stock Volit -0.21∗ 0.13 0.15 -0.02
(-1.66) (1.09) (0.96) (-0.12)

CAPM betait -0.52∗∗ -0.99 -1.07 -0.74
(-2.11) (-1.40) (-1.35) (-0.81)

Prob Defit -7.10 -10.45 -11.43 -9.27
(-1.20) (-1.01) (-0.92) (-0.97)

95% VaRit 0.59 -1.11 -1.23 -1.47
(1.29) (-1.10) (-1.00) (-1.63)

Mat Mismatchit 1.34∗∗∗ 8.91 9.01 -4.42
(2.92) (1.13) (1.14) (-1.27)

# Subsit ×10−3 2.88∗∗∗ -0.89 -1.30∗ 2.31
(2.76) (-0.76) (-1.93) (0.63)

Adj. R2 0.72 0.86 0.86 0.03 0.03 0.04 0.04 0.05 0.05
AR(2) p-value 0.06 0.05
FE (Bank,Time) N, N N, N N, N Y, N Y, Y Y, N Y, Y Y, Y Y, Y Y, Y Y, Y
Num Obs 4,670 4,670 3,624 4,670 4,670 4,670 4,670 3,624 3,624 4,670 3,624
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table IA-22

Pooled OLS Fixed Effects Dynamic Panel

SBit 0.00 0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 0.00 0.00 0.00
(1.58) (0.71) (0.91) (-0.62) (-0.93) (-0.46) (1.11) (-0.47) (0.22) (0.54) (0.68)

CoRiskit 0.03 0.06∗∗ 0.04 0.06∗ 0.07∗∗ 0.04 0.05
(1.29) (2.04) (1.39) (2.03) (2.06) (1.01) (1.34)

Stock Retit -0.00 0.00 -0.00 -0.00
(-0.79) (1.16) (-0.89) (-0.23)

Stock Volit -0.00 -0.00 -0.00 -0.00
(-0.60) (-0.31) (-1.59) (-1.26)

CAPM betait -0.00 -0.00 0.00 0.00
(-1.00) (-0.00) (1.11) (0.88)

Prob Defit -0.00 0.00 0.00 0.00
(-0.51) (0.23) (0.98) (0.87)

95% VaRit -0.00 0.00 0.00 0.00
(-0.61) (0.42) (1.55) (0.68)

Mat Mismatchit 0.00 0.00 0.00 0.00
(1.42) (0.37) (1.10) (0.45)

# Subsit ×10−3 -0.00 -0.00∗∗ -0.00 -0.00
(-0.61) (-2.05) (-0.18) (-0.43)

Adj. R2 0.00 -0.00 0.01 -0.00 0.20 -0.00 0.30 0.20 0.30
AR(2) p-value 0.01 0.01
FE (Bank,Time) N, N N, N N, N Y, N Y, Y Y, N Y, Y Y, Y Y, Y Y, Y Y, Y
Num Obs 1,031 766 729 1,031 1,031 766 766 968 729 766 729
t-statistics in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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G Basel III capital risk weights

We base our risk weights on the “International Convergence of Capital Measurement and Capital Standards,” issued in June
2006 by the Basel Committee on Banking Supervision. When the Basel standards are very different from the U.S. implemen-
tation, or too general, we use the Federal Register, Vol. 77, No. 169, August 30, 2012, Part III and the Federal Register, Vol.
78, No. 198, October 11, 2013. When possible, we use the standardized approach. Of course, there is substantial judgment
in assigning risk-weights and the advanced approaches could lead to very different risk weights.23 In addition, some of our
asset categories contain assets with heterogeneous risk-weights, whose relative magnitudes are not possible to determine
using Y-9C data. Nevertheless, we believe the weights are broadly representative and are sufficiently reasonable to illustrate
the effect of capital requirements. We determine the weights as follows:

Asset class Risk
weight

Notes

Cash 0% Has no credit risk.
U.S. Treasuries 0% The U.S. has an ECA risk score of 0 to 1, thus receives zero risk weight on its sovereign debt. See

Annex 11, Section I.A, paragraph 2 of Basel Committee, 2006.
Repo & fed funds loans 0% By virtue of Part II, Section 2.D, paragraphs 170 and 171, and since virtually all the collateral in

our data are U.S. Treasuries and Agency MBS, we assign a risk-weight of zero.
Agency MBS 20% Treated as claims on banks and securities firms according to Annex 11, Section I.B, paragraph 7.

Based on Annex 11, Section I.C, paragraph 8, we assign a 20% risk weight.
Agency securities 20% Identical treatment as agency MBS.
ABS & other debt securities 100% Other assets with 100% risk weight (Annex 11, Section I.J, paragraph 23).
Equities & other securities 100% Other assets with 100% risk weight (Annex 11, Section I.J, paragraph 23).
Municipal securities 10% Treated the same as agency securities according to Annex 11, Section I.B, paragraph 7 and thus

generically receive a risk weight of 20%. However, the characteristics detailed in footnote 260 are
satisfied by a large number of municipal securities, which should then receive a 0% risk weight.

23See, for example, Basel II: International Convergence of Capital Measurement and Capital Standards: a Revised Framework and Le Leslé and
Avramova (2012).
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Asset class Risk
weight

Notes

Residential real estate loans 65% Annex 11, Section I.F, paragraph 15 proposes 35%. The risk weight could be higher if local
regulator deems appropriate (Annex 11, Section I.F, paragraph 16). In the U.S., the
implementation of the standardized approach has significantly higher risk-weights, ranging
from 50% to 100% depending on the characteristics of the loan (Federal Register, Vol. 78, No.
198, October 11, 2013).

Non-agency MBS 35% See Annex 11, Section I.F, paragraph 15.
C & I loans 100% A heterogeneous group of asset types with risk weights ranging from 75% to 150%. See Annex

11, Section I.D-I.I.
Commercial real estate loans 100% See Annex 11, Section I.G, paragraph 17.
Consumer loans 75% See Annex 11, Section I.E, paragraphs 12-13. Risk-weight of 75% assumes orientation, product

and granularity criteria are met, could be higher if not met. In the U.S., consumer loans get 100%
risk-weight under the standardized approach (Federal Register, Vol. 77, No. 169, August 30,
2012, Part III).

Lease financings 100% Other assets with 100% risk weight (Annex 11, Section I.J, paragraph 23).
Other real estate loans 100% Mostly collateralized by farmland, treated as commercial real estate loans.
Residual loans 100% Other assets with 100% risk weight (Annex 11, Section I.J, paragraph 23).
Residual assets 100% Other assets with 100% risk weight (Annex 11, Section I.J, paragraph 23).
Residual securities 100% Other assets with 100% risk weight (Annex 11, Section I.J, paragraph 23).
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H Systemic Risk Measures

The systemic risk measures that we examine in Section 6 come from two sources. The first
source is Giglio, Kelly, and Pruitt (2016). We thank Stefano Giglio, Bryan Kelly and Seth
Pruitt for generously sharing with us the time-series of all the systemic risk measures they
use. The time-series of the 19 measures they use can be downloaded from Stefano Giglio’s
website or from Seth Pruitt’s website. See Table 1 in Giglio, Kelly, and Pruitt (2016) for a
list of the 19 measures they use.

The second source is Bisias et al. (2012), who provide a public code base and a detailed
appendix to reconstruct the systemic risk measures they survey. They provide neither the
underlying raw data nor the time series of the constructed measures. We follow their con-
struction as closely as possible. In this Appendix, we only document instances in which
we deviate from their construction (usually because of data availability) or make assump-
tions (usually because they provide several alternatives, do not provide enough detail, or
do not provide the relevant code to construct the measure). If any details in the construc-
tion of the measures are not documented below, it means they are exactly as in Bisias et al.
(2012). We use their notation and nomenclature without defining or explaining terms, all
of which can be found in Bisias et al. (2012), its code base or its appendix. Whenever the
measures are constructed at a frequency higher than quarterly, we convert to quarterly
frequency by taking the average of all observations within the quarter, with the excep-
tion of the two measures constructed in section *F.5 (Equity Market Illiquidity) where we
take the largest value of all daily observations in the quarter (to preserve the dynamics
highlighted in Bisias et al., 2012). We number the following sections in accordance with
the numbering in Bisias et al., 2012, prefaced with a star to distinguish from the section
numbering of our paper.

*A Macroeconomic Measures

*A.1 Costly Asset-Price Boom/Bust Cycles

Data. Weonly conduct the analysis for theU.S.We use themethod in Filardo et al. (2018)
to generate the aggregate asset price index that defines when an asset price boom occurs.
The index is the first principal component of two variables: the ratio of total U.S. private
sector credit to potential GDP and a real house price index. Total private sector credit is
from the BIS and nominal potential GDP data is from FRED. The house price index is
a weighted average of the real residential housing price index and the real equity price
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Figure IA-6

index, both from the OECD. To weight the two components, we use the real estate market
value for the U.S. from FRED and the total market capitalization from the World Bank.

Code. We add a calculation for the average lead time (ALT). We also construct the opti-
mal percentile threshold selection for each indicator variable, which is determined as the
percentile that minimizes the loss function.

Output. We construct five systemic risk measures, shown in Figure IA-6: the sum of the
warnings for the five signals that have the highest usefulness indicator, the percentage of
signals that flash a warning, and the weighted average of all signals with weights calcu-
lated using the usefulness indicator in equation (A.2), dp in equation (A.5), and ALT. In
Figure 10 from Section 6, we show the weighted average of signals using the usefulness
indicator as weights.

*A.2 Property-Price, Equity-Price, and Credit-Gap Indicators

Data. We use the specification for the property index from the appendix of Aldasoro
et al. (2018), using real residential property prices data for the U.S. from the BIS, rather
than taking a weighted average of residential and commercial property price indices from
the BIS with weights given by their share in private sector wealth. We only conduct the
analysis for the U.S.
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Figure IA-7

Code. We adapt the gap definition to the percent change from the trend, i.e.(Observed
– Trend)/Trend, rather than the (additive) difference, i.e. (Observed – Trend).

Output. We construct three systemic risk measures, shown in Figure IA-7. These mea-
sures are the “warning signals” based on: credit-to-GDP and property prices, credit-to-
GDP and equity prices, or property prices and equity prices. In Figure 10 from Section 6,
we show the warning signal of credit-to-GDP and property prices.

*B Granular Foundation and Network Measures

*B.1 The Default Intensity Model

Output. We thankKayGiesecke andBaehoKim for generously sharing their constructed
measures with us. Figure IA-8 shows the 95% and 99% VaR of the economy-wide and
system-wide (financial sector) default rates. In Figure 10 from Section 6, we show the
economy-wide 99% VaR of default rates.

*B.2 Network Analysis and Systemic Financial Linkages

Data. For the country capital stocks, BIS data starts in 2013. For pre-2013 capital stocks,
we use GDP growth rates (also from the BIS) to proxy for capital growth rates.

IA-37



0.07

0.11

0.16

0.2

0

1.4

2.8

4.2

D
ef

au
lt 

ra
te

 (p
er

ce
nt

, a
nn

ua
l)

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

95% VaR of the economy-wide default rates
99% VaR of the economy-wide default rates
95% VaR of the system-wide (fin. sector) default rates
99% VaR of the system-wide (fin. sector) default rates
AV (right axis)

Figure IA-8

Output. Figure IA-9 shows the two systemic risk measures we construct: the mean cap-
ital loss for the U.S. across isolated international defaults (one country at a time), and the
number of simulations in which the U.S. defaults (which turns out to always be zero). In
Figure 10 from Section 6, we show the mean capital loss for the U.S.

*B.3 PCA and Granger-Causality Networks

Data. For the individual institution case, we compute ranks every three years beginning
in January 1994 (matches analysis in original paper). We use the largest 25 banks, broker-
dealers, hedge funds, and insurers, for a total of 100 firms. Banks, broker-dealer, and in-
surer data is from CRSP and hedge fund data is from TASS.

Output. TheGranger networks are calculated for the four industries. b3 InstitutionCom-
monality: percent of variation explained by the first principal component of sector/institution
returns over a 36 month rolling window. Figure IA-10 shows the three systemic risk mea-
sures we construct: the DCI from equation (A.17) at the index level, “Institution Com-
monality” from equation (A.18) also at the index level, and the average of firm-level DCI.
In Figure 10 from Section 6, we show the DCI at the index level.

*B.4 Bank Funding Risk and Shock Transmission

Code. We generate an undirected network for each quarter and a directed network for
each year, which was not constructed by the code provided in Bisias et al. (2012).
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Output. We construct tenmeasures of systemic risk, shown in Figure IA-11. Four of these
measures are the upper and lower bounds for USD funding risk at the group-level and
for the sum of USD funding risks at the office-location level. The other six measures are
constructed by using the directed and undirected networks. For the directed network, two
of the measures are given by the sum of upper and lower bounds of funding risks across
linkages with positive net flows from the U.S. The third measure is the annual change in
U.S. net claims. For the undirected network, two of the measures are given by the sum of
upper and lower bounds of funding risks across linkages with the U.S. The third measure
is the sum over all U.S. linkages. In Figure 10 from Section 6, we show the sum of upper
bounds of funding risks across linkages with the U.S.

*C Forward-Looking Risk Measurement

*C.1 Contingent Claims Analysis

Data. Equity prices are from Bloomberg and CDS spreads fromMarkit. Bloomberg data
was used to construct the default barrier, rather thanMoody’s KMVCreditEdge. The orig-
inal paper uses the “36 largest financial institutions (banks, insurance companies and asset
managers)” though the exact firms are not specified. We use a sample of 20 large financial
institutions with liquid CDS contracts.

Output. We construct the systemic risk measure from equation (A.29), which is the sum
of implicit guarantees across all institutions in the sample, shown in Figure IA-12 and
Figure 10 in Section 6.

*C.2 Mahalanobis Distance

Data. The authors are not specific about what bond, commodity, and real estate returns
they use. We pick three commodities: gold, oil, and natural gas; the Wilshire REIT Index
for real estate; and Moody’s BAA relative to the 10Y treasury for bonds.

Output. We construct the “financial turbulence” systemic risk measure from equation
(A.30), shown in Figure IA-12 and Figure 10 in Section 6.
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Figure IA-14

*C.5 Simulating the Housing Sector

Data. We use Average Sales Price for New Houses Sold in the United States rather than
“New One-Family Houses Sold.”

Output. We construct two systemic riskmeasures, shown in Figure IA-14: the total value
of mortgage lender guarantees from equation (A.52), and the aggregate sensitivity of
guarantees from equation (A.53). In Figure 10 from Section 6, we show the sensitivity
of guarantees.

*C.6 Consumer Credit

Data. We use actual consumer credit variables, instead of using those predicted by a
machine learning model. We lag the realized measures by the window of prediction (six
months).Observed consumer creditmeasuresmirror themodel-predicted ones quite closely
(the machine learning algorithm used in the original model had an R2 of 85%). We use
data from the Federal Reserve Bank of New York’s Quarterly Report on Household and
Credit.

Output. Figure IA-15 shows the four systemic risk measures we construct: percent of
total balances 90+ days delinquent, percent of credit card balances 90+ days delinquent,
transition into seriously delinquency for credit cards as a percent of total balances, and
transition into seriously delinquency for all loan types as a percent of total balances. In
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Figure IA-15

Figure 10 from Section 6, we show the percent of credit card balances 90+ days delinquent.

*C.7 Principal Components Analysis (PCA)

Data. We use MSCI indices from the MSCI website and Case-Shiller subindices from
Bloomberg. 24

Output. Figure IA-17 shows the four systemic riskmeasureswe construct: the absorption
ratio and the change in the absorption ratio for either 11MSCI subindices or 14Case-Shiller
city subindicies. In Figure 10 from Section 6, we show the absorption ratio for the 11MSCI
subindices.

*D Stress Tests

*D.1 GDP Stress Tests

Code. For each crisis period (i.e. 2007q3 in the U.S.), we determine the forecast error for
that crisis period and construct a time serieswherewe conduct a stress test for each quarter
using the forecast error for the crisis as the shock. Therefore, the shock is identical for
each stress-tested quarter. When generating the time series of stress test results, we iterate

24For robustness we pull the universe of MSCI indicies from Bloomberg (32 indicies) and find similar
results.
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Figure IA-17

quarter by quarter and for each iterationwe estimate anARmodel usingGDP growth data
up until the quarter in question. We shock GDP growth four quarters prior to the quarter,
project the series forward using the estimated AR process, and compute maximum drops
in GDP for the stress test period and drops in actual GDP for the quarter in question. We
also generate a forecast error that is specific to each quarter, which returns a time series
of forecast errors. We then conduct the stress test for each quarter using the forecast error
corresponding to that quarter rather than a fixed forecast error corresponding to a specific
crisis period.

Output. We run the same stress test exercise for forecast error shocks that are unique
to each quarter. Figure IA-17 shows the two systemic risk measures we construct. They
both correspond to the difference between the maximum drop in GDP growth during the
hypothetical stress test and actual GDP growth in the data. The twomeasures differ in the
assumed shock: one uses the the forecast error for the U.S. 2007q3 crisis while the other
uses the forecast error of the current quarter. In Figure 10 from Section 6, we show the
measure that uses the 2007q3 scenario.

*E Cross-Sectional Measures

*E.1 CoVaR

Data. Weobtain CoVaR from two sources: the Board of Governors of the Federal Reserve
(for a sample of large and medium banks), and the online supplementary materials from
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Adrian and Brunnermeier (2016) (for publicly traded firms).

Output. Figure IA-18 shows four systemic risk measures: the average across firms of
CoVaR and of dollar CoVaR computed using either the Board of Governor’s data or the
data from Adrian and Brunnermeier (2016). In Figure 10 from Section 6, we show the
average across firms of CoVaR constructed by the Board of Governors.

*E.2 Distressed Insurance Premium

Data. Instead of using CDS-implied probabilities of default, we use the risk neutral de-
fault probabilities from Moody’s KMV. Then, rather than using daily intra-day correla-
tions, we use end-of-day return correlations over the course of the previous year, calcu-
lated on a rolling basis each quarter. We keep firms with at least 120 days of observations
during the previous year.

Code. In addition to the economy-wide DIP measure, we compute a firm-specific DIP
measure, using liabilities data from Moody’s KMV.

Output. Figure IA-19 shows the economy-wide DIP measure, which is also shown in
Figure 10 from Section 6.
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Figure IA-19

*E.3 Co-Risk

Data. Instead of using the 3-month GCF Repo Rate, we use the overnight Treasury GC
Repo Primary Dealer Survey Rate. For CDS Spreads, we use the Markit quoted 5-year
spreads.Where possible, we use traditional documentation clauses (XR, XR14); for entity-
date combinations on which there is no traditional clause available, we use another doc-
umentation clause if the quote is distinct to that day. The original paper used a sample
of 25 representative institutions. We use the subset of those original 25 institutions that
are BHCs (firms that have Y-9C data), and add additional financial institutions for which
Markit provides the requisite data and identifiers.

Code. Instead of computing Co-Risk at a single point in time using the full history of
spreads going back five years, we compute Co-Risk in every month of our sample. Specif-
ically, for each month, we run the quantile regressions on every combination of banks for
which there are at least 63 days in commonwith non-missing observations in the previous
year (63 is the number of trading days in a quarter).25 We construct Co-Risk(i) for firm
i by taking the average of Co-Risk(i, j) across all j, and aggregate Co-Risk by taking the
average of Co-Risk(i) across all firms i.

Output. Figure IA-20 shows aggregate Co-Risk, which is also shown in Figure 10 from
Section 6.

25We changed the last line of the MATLAB source code co_risk.m provided by Bisias et al. (2012) so
that the computation matches the one given by equation (A.77); the input and output CDS spreads were
incorrectly switched in the code.
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*E.4 Marginal and Systemic Expected Shortfall

Output. We thank Asani Sarkar and Robert Engle for sharing data on MES, SES and
SRISKwith us. Figure IA-21 shows aggregateMES, SES and SRISK, obtained by taking the
average of their firm-level counterparts. In Figure 10 from Section 6, we show aggregate
SRISK.

*F Measures of Illiquidity and Insolvency

*F.3 Noise as Information for Illiquidity

Data. We download the output directly from Jun Pan’s website.

Output. Figure IA-22 shows the noise measure, also shown in Figure 10 from Section 6.

*F.4 Crowded Trades in Currency Funds

Data. We thank Pierre Lequeux for sharing an updated series of his AFX CurrencyMan-
agement Index. Pierre has a blog post with details on the index’s construction. We use
TASS for firm-level statistics (aggregated at the monthly level rather than weekly).

Code. We calculate the alternative crowdedness measure in equation (A.90) using X =

1.
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Output. We produce each crowdedness measure using 6, 24, and 60-month rolling win-
dows. We then construct three systemic risk measures, shown in Figure IA-23, by taking
the average of all measures that use 6, 24, and 60-month rolling windows, respectively. In
Figure 10 from Section 6, we show the measure based on 24-month rolling windows.

*F.5 Equity Market Illiquidity

Data. For the contrarian trading strategymeasure,we use hourly intra-day tick data from
Thomson Reuters Intraday database and construct one-hour returns (rather than exam-
ining all five minute intervals from five minutes up to one hour). We use all stocks from
the S&P500 rather than the S&P1500. For our price impact liquidity measure, we use pre-
constructed lambdas fromWRDS Intraday database.

Output. We construct two systemic risk measures, shown in Figure IA-24. The first mea-
sure is given by the returns of the contrarian trading strategy, constructed by taking the
average daily returns of the long minus short portfolio strategy, where the long and short
are equally weighted. The second measure is the price-liquidity measure, which is the
equal weighted mean of lambdas by day across all companies available on the given date,
winsorizing the sample at the 1% level by day to exclude outliers. In Figure 10 from Section
6, we show the return on the contrarian trading strategy.
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*F.6 Serial Correlation and Illiquidity in Hedge Fund Returns

Data. We construct the measure for indices only. All indices and S&P data are from
Bloomberg.

Output. We construct three systemic risk measures, shown in Figure IA-25. The first
measure is the value-weighted average (across funds) of the first-order autocorrelation
of fund returns. The other two measures are analogous but use second- and third-order
autocorrelations. In Figure 10 from Section 6, we show the measure based on first-order
autocorrelations.

*F.7 Broader Hedge-Fund Based Systemic Risk Measures

Data. For the autocorrelation measures, we a use 5-year rolling window to generate a
time series of the Q-statistic and the Systemicness Indicator. For the probability of liquida-
tion, we assume the liquidation year of a fund to be the fund’s performance end date. We
keep all observations for which there exists two years (24 months) of non-missing data.

Code. We set Q-statistics that equal zero to missing before taking the median for the ag-
gregate time series measure. To generate the aggregate systemicness indicator, we output
a panel of first-order autocorrelations for fund returns and calculate the cross-sectional
weighted average each month weighted by assets under management where the code in
Bisias et al. (2012) uses the same weight over the entire time series. For the probability of
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liquidation measure, we produce a yearly time series. We also calculate the age of a fund
as the number of months from inception to the end of the corresponding year.

Output. We construct five systemic risk measures, shown in Figure IA-26: the mean and
median probability of liquidation across funds, the median Q-statistic across funds, and
the value-weighted average of the systemic liquidity indicator defined in equation (A.104),
using as weights either the AUM of each fund for the current period or the average AUM
of each funds over the entire lifetime of the fund. In Figure 10 from Section 6, we show the
AUM-weighted average of the systemic liquidity indicator.
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