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1 Introduction

Over the past two decades dynamic factor models have become a standard econometric tool

for both measuring comovement in and forecasting macroeconomic time series. The popu-

larity of these models has risen as methods have been developed to perform factor analysis

on large datasets, such as the time-domain approach of Stock and Watson (2002a) and the

frequency-domain approach of Forni and Reichlin (1998) and Forni, Hallin, Lippi, Reichlin

(2001, 2005).1The work of Otrok and Whiteman (1998) and Kim and Nelson (1999b) pro-

vides a Bayesian alternative to the classical approaches. One goal of this literature has been

to extract information from large datasets that is useful in forecasting exercises. A second

goal, and the one we focus on this paper, is the use of the factor models to quantify both

the extent and nature of comovement in a set of time series data.2 3

An assumption of most dynamic factor models is that both the stochastic process driving

volatility and the nature of comovement among variables has not changed over time.4 But

much recent empirical work shows that the assumption of structural stability is invalid for

many macroeconomic datasets. For example, McConnell and Perez-Quiros (2000) show that

output volatility in the US has moderated since the mid 1980s, a fact known as ‘the great

moderation’. In a methodological contrast to the break test approach of most of the great

moderation literature, Cogley and Sargent (2001) show how the nature of inflation dynamics

has evolved in the post war period using a time-varying parameter model to model a more
1Bai and Ng (2002) provide the econometric theory for choosing the optimal number of factors in these

large scale models.
2Forni and Reichlin (1998) study the role of sector specific and aggregate technological shocks on dis-

aggregated industry level output data in the US. Stock and Watson (1999) use their model to study the

dynamics of inflation in the US using sectoral inflation data. In the international context Forni and Reichlin

(2001) study comovement of regional output in European countries. Kose, Otrok and Whiteman (2003)

quantify the importance of world, regional and country specific cycles in international macroeconomic data.
3Factor models have a direct mapping in dynamic stochastic general equilibrium models (DSGE) where

the observables respond to common unobserved state variables (e.g. Altug 1989, Sargent 1989). The

dynamic factor model uses many noisy signals of the observable data to extract information about the

underlying structural sources of comovement, and provide empirical evidence on the nature of macroeconomic

fluctuations that can be used to inform the building of structural models. The model developed here provides

a bridge to the recent literature investigating changes in volatility in a DSGE model (e.g. Justiano and

Primiceri 2007).
4Chauvet and Potter (2001) represents an exception, as they estimate a regime-switching factor model

on four variables. Mumtaz and Surico (2006) also estimate a factor model with some time-variation in the

parameters, following the motivation and to some extent the approach outlined in the first draft of this

paper (Del Negro and Otrok 2003).
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slowly changing dynamics in the data. The message of all of this work is that models with

fixed parameters may not do too well at describing macroeconomic data.

In this paper we develop a dynamic factor model with time-varying coefficients and

stochastic volatility to bridge the literature on factor models with the literature on parameter

instability. This measurement tool is designed to capture changing comovements among

time series by allowing for their dependence on common factors to evolve over time. It also

allows for stochastic volatility in the innovations to the processes followed by the factors

and the idiosyncratic components. Time variation in the factor loadings and stochastic

volatilities are modeled as a random walk, following Cogley and Sargent’s (2000) work on

vector autoregressions.5 The estimation procedure is Bayesian and parametric and employs

a Gibbs sampler techniques to draw from the exact finite sample joint posterior distribution

of the parameters and factors.

We apply our time-varying dynamic factor model to study international business cycle

dynamics in the post-Bretton Wood period, using data on the growth rates of real output for

19 developed countries. Recent work documents that international business cycles changed

in two important dimensions during this period. First, Blanchard and Simon (2001) show

that there has been a global decline in output volatility in G7 countries, with the magnitude

and timing of the decline differing across countries.6 To illustrate this fact Figure 1 shows

ten year rolling window estimates of the volatility of real GDP growth for the a subset of

our sample, the G7 countries (the date on the horizontal axis refers to the end-date of the

window).7 While there is consensus that volatility in the US did decline, there is generally

no agreement in the literature on whether this phenomenon is the outcome of structural

changes in the economy (e.g. Kahn, McConnell and Gabriel Perez-Quiros 2002, Jaimovich

and Shin 2007, Gali and Gambetti 2007), good policy (e.g. Blanchard and Simon 2001), or

good luck as manifested by smaller shocks (e.g. Stock and Watson 2002b, Ahmed, Levin

and Wilson 2004, Sims and Zha 2006). While so far much of the literature sides with the

latter camp, the precise nature of the shocks driving the great moderation is still unknown.8

5Recent work by Stock and Watson (2007) provides “smoothness” conditions under which the principal

component estimates of latent factors are still consistent under parameter instability. However, when time

variation is relatively sudden, or is large, these conditions may not be met. Most importantly, their approach

does not allow one to identify and measure the timing and extent of the changes, which is the objective of

this paper, but rather shows that when these changes are small, and smooth, non-parametric methods may

still be robust.
6See also Summers (2005).
7Our empirical application will of course use the entire sample. We chose here a rolling window because

it is a commonly used way of presenting first-pass evidence of time-variation.
8Stock and Watson (2002) and Giannone, Lenza, and Reichlin (2008) provide a review of the literature.
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Stock and Watson (2005) use univariate autoregressions with time-varying coefficients and

stochastic volatility to present statistical evidence on the great moderation for G7 countries.

Separately, they use a factor-augmented vector-autoregression (VAR) estimated over a pre-

and post-1983 subsample to investigate whether international or domestic shocks are the

source of the decline in volatility. They find that international shocks played an important

role.

Second, some papers claim that the nature of comovement across G7 countries has also

changed over time. Heathcote and Perri (2004) argue that cross-country correlations have

declined since the early 1980s (they plot the correlation between the US and an aggregate of

Europe and Japan). Doyle and Faust (2005) estimate a VAR on the GDP growth rates for

six countries (G7 minus Japan) imposing three break dates, roughly corresponding to the

beginning of each decade (1970-Q1, 1981-Q1, 1992-Q2).9 They question the statistical sig-

nificance of the decline in bivariate cross-country correlations. Kose, Otrok and Whiteman

(2007) estimate a fixed parameter dynamic factor model on three subsamples of the data

(1960-1972, 1972-1986, 1986-2003). They conclude that comovement has declined from the

period 1972-1986 to the post 1986 sample.

We use our measurement tool to document changes in both volatility and synchro-

nization. The factor structure captures comovement, both at the global level (e.g., due to

common shocks to technology as in the international business cycle literature) and at the

regional one (e.g., European cycles). Changes in the volatility of the factors allow for vari-

ation in the importance of global or regional shocks. We also allow the sensitivity (factor

loading) of each country to the common factors vary over time, reflecting the possibility that

some countries may have become more (or less) sensitive to global shocks due to changes

in policy or in the structure of the economy (financial or trade integration). Finally, the

standard deviation of country-specific shocks can also evolve. In contrast with much of the

previous literature, our approach does not rely on rolling window or subsample estimates,

or univariate analysis: We use a methodology that explicitly models time-variation in the

coefficients and, at the same time, considers all countries jointly. We can therefore present

statistical evidence on the timing and the extent of the decline in volatility for different

countries taking into account that the sources of this decline can be both international and

domestic. Since we do not impose that parameters change for all countries at the same time,

as customary in the break test literature, the framework can accommodate the cross-country

heterogeneity first shown by Blanchard and Simon (2001).

9Doyle and Faust also consider, separately, growth rates in consumption and investment.
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We find that for most countries the variance of output growth has declined significantly

since the 1970s, but that there is much heterogeneity in the magnitude, timing, and source

of the decline in volatility. The international business cycle component played a role in the

great moderation, especially for G7 countries, but rarely in isolation: For most countries the

variance attributed to both domestic and international cycles drops. Countries’ sensitivities

to international cycles evolve differently over time, however. For the US in particular,

the sensitivity to international business cycles and domestic business cycles decline sharply

roughly in the same period, the eighties. For Japan, the sensitivity to international business

cycle also declines, albeit mostly in the seventies, but the variance of domestic cycles does

not. If our reduced form model can only go so far in resolving the debate over good luck or

good policy, these findings indicates that a decline in the magnitude of international shocks

cannot be the only explanation for the decline in volatility.

We find statistical evidence that the average cross-country correlation among G7 coun-

tries has declined over time, in line with Heathcote and Perri (2004). The average correlation

across all countries, European countries, or Euro area countries has remained the same since

1970, however. Consistent with these findings, there is little statistical evidence that the rel-

ative importance of international and domestic business cycles in the variance decomposition

has changed in the post-Bretton Wood period, except for some of the G7 countries. In sum,

we find no evidence that higher financial and trade integration increases the business-cycle

correlation across countries.

Finally, we document a decline in the cross-country dispersion of output volatility across

country, which to our knowledge is a novel finding. In other words, we show that since

the Bretton Woods period there has been a convergence across countries in terms of the

magnitude of business cycle fluctuations. This is true for G7 countries, as well as for all the

countries in the sample.

The rest of the paper is divided into three sections. Section 2 describes the structure of

the model. Section 3 briefly discusses the Gibbs sampler we use for model estimation (more

details are provided in the technical appendix). Readers not interested in the econometric

implementation of the model can skip this section. The results are presented and discussed

in section 3.
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2 The Model

Dynamic factor models decompose the dynamics of observables yi,t, i = 1, . . . , n, t =

1, . . . , T into the sum of two unobservable components, one that affects all yis, namely the

factors ft, and one that is idiosyncratic, e.g. specific to each i:

yi,t = ai + bift + εi,t, (1)

where ai is the constant and bi is the exposure, or loading, of series i to the common factors.

Although the setup accommodates multiple factors, and indeed we have two factors in the

empirical application – for clarity of exposition in this section we write the equations as if

we had only one factor. Both the factor and idiosyncratic components follow autoregressive

processes of order q and pi respectively:

ft = φ0,1ft−1 + .. + φ0,qft−q + u0,t, and (2)

εi,t = φi,1εi,t−1 + .. + φi,pi
εi,t−pi

+ σiui,t, (3)

where σi is the standard deviation of the idiosyncratic component, and ui,t ∼ N (0, 1) for

i = 0 and i = 1, .., n are the innovations to the law of motions 2 and 3, respectively.10 These

innovations are i.i.d. over time and across i. The latter is the key identifying assumption in

the model, as it postulates that all comovements in the data arises from the factors.11 The

factors’ innovations are also assumed to be uncorrelated with one another. Note that expres-

sions (1), (2), (3) can be viewed as the measurement and transition equations, respectively,

in a state-space representation. The model just described is the standard dynamic factor

model estimated for example in Stock and Watson (1989), and used to study international

business cycles in Kose et al. (2003).

We modify the standard factor model in three ways. First, we make the loadings time-

varying. This feature allows for changes in the sensitivity of individual series to common

factors. Our measurement equation then becomes:

yi,t = ai + bi,tft + εi,t (4)

10Note that σ0 is set to 1, which is a standard normalization assumption given that the scale of the

loadings bis and σ0 cannot be separately identified.
11The literature has also considered “approximate” factor models, that is, models where the idiosyncratic

shocks can be cross-sectionally correlated. Doz, Giannone and Reichlin (2006) show that even in this

situation maximum likelihood asymptotically delivers consistent estimates of the factors. This result is

important for us since we effectively use maximum likelihood techniques.
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where we control the evolution of the factor loadings by requiring that they follow a random

walk without drift:

bi,t = bi,t−1 + σηi
ηi,t. (5)

We assume that ηi,t ∼ N (0, 1) and is independent across i. This is a stark, but important,

identifying assumption as we will see later.

The second innovation amounts to introducing stochastic volatility in the law of motion

of the factors and the idiosyncratic shocks. The transition equations, (2) and (3) become:

ft = φ0,1ft−1 + .. + φ0,qft−q + eh0,tu0,t and (6)

εi,t = φi,1εi,t−1 + .. + φi,pi
εi,t−pi

+ σie
hi,tui,t, (7)

respectively. The terms ehi,t represents the stochastic volatility components, where hi,t

follows a random walk process:

hi,t = hi,t−1 + σζiζi,t, i = 0, 1, .., n (8)

with ζi,t ∼ N (0, 1) and is independent across i (note that h0,t denotes the factor’s stochastic

volatility term). We assume that hi,t = 0 for t ≤ 0, i = 0, 1, ., n, that is, before the beginning

of the sample period there is no stochastic volatility: This assumption allows us to derive

an ergodic distribution for the initial conditions. In the remainder of the section we will

sometimes use the notation: σi,t = σie
hi,t .

2.1 Normalization, identification, and modeling choices

Several issues of identification and normalization arise in this model, some of which we

already have discussed. First, in (4) both the loadings and the factors vary over time.

However, the assumption that the ηi,ts are independent across i implies that only the factors

capture comovement among the series.

Second, a normalization issue is that the relative scale of loadings and factors is indeter-

minate. We can multiply bi,t by κ for all i, obtaining b̃i,t = κbi,t, and divide the factor ft by

κ, obtaining f̃t = ft/κ. As long as the standard deviation of the innovation in 6 is adjusted

accordingly as eh̃0,t = eh0,t−log(κ), the two models are observationally equivalent. This is

a standard problem, even when parameters do not vary over time, and we address it by

constraining the scale of the factor (see footnote 10). The scale of h0,t depends on the initial

condition h0,0. We therefore fix h0,0 = 0. Parameterizing the volatility of the innovations to

the idiosyncratic shocks σi,t as the product of σi and ehi,t induces a related normalization
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problem: σie
hi,t = σi

κ ehi,t+log(κ). This problem is similarly addressed by fixing the initial

value of the process, hi,0 = 0 for all i.

Third, given time variation in the loadings and in the factor’s volatilities, we need to

worry about the possibility that the rescaling is time-varying, that is, that the rescaling

term is given by a sequence {κt}T
t=1 instead of a scalar κ. Specifically, one could rescale

the loadings bi,t for all i by κt, bi,t−1 by κt−1, and so on. This normalization problem is

avoided because: i) since the factor follow an AR(q) process, the rescaled factors f̃t = ft/κt

would not satisfy (6); ii) the rescaled loadings b̃i,t = κtbi,t would not satisfy (5). Even if the

strict normalization problem is avoided, one could still be concerned that the identification

of “common” shifts in the loadings from changes in the stochastic volatility of the factor is

tenuous. The answer is simple: common shifts in the loadings are ruled out from the start

by assuming that the innovations in (5) are independent across i. In other words, if the

data were to indicate that the exposures have shifted for all i, the model would capture this

phenomenon by changes in the stochastic volatility of the factor.

A final normalization issue common to all factor models is that the sign of the factor

ft and the loadings bi,t is indeterminate: the likelihood is the same if we multiply both ft

and the bi,ts, for all i, by −1. In practice this is a problem to the extent that the MCMC

draws switch sign along the Markov chain. We did not find this to be a problem in our

application.12 In applications where this is an issue, Hamilton, Waggoner, and Zha (2007)

provide a solution.

We conclude with a discussion of modeling choices. We modeled time-variation in

both loadings and stochastic volatilities as a drift process as in Cogley and Sargent (2001,

2005). The belief that changes, whether due to policy or structure or luck, are permanent

rather than transitory lead to to prefer this specification over a stationary process. Another

alternative consists in modeling time-variation as the result of switching across regimes, as

in Sims and Zha (2006), or as structural breaks as in Doyle and Faust (2005). The evidence

on cross-country heterogeneity in the timing of the great moderation poses a modeling

challenge for this approach: to capture this heterogeneity we would need several regimes.

We leave this interesting challenge to future research.

The only non time-varying parameters in our setup are those of the law of motion of the

factors and the idiosyncratic shocks (equations 6 and 7). From a computational standpoint

making these parameters time-varying would not be a challenge (see Mumtaz and Surico

2006). In this paper, we do not follow this route for two reasons: First, time-variation in

12We use the cross-sectional mean of the data to initialize the factor in the MCMC procedure.
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these parameters would raise additional idientification issues. Second, evidence in Ahmed

et al. (2005) indicates that there is little evidence of changes in the shape of the normalized

spectrum for US output growth rates; that is, there is no compelling evidence in favor of

time-variation for these parameters. Again, we leave to further research to test whether the

dynamics of the factors or the idiosyncratic shocks have changed.

2.2 Our Application: World Business Cycles and the Great Mod-

eration

So far we described the time-varying parameters factor model in fairly general terms. In this

section we discuss the equations and the assumptions in the context of the specific appli-

cation pursued in this paper: the study of international business cycles. The measurement

equation we use is:

yi,t = ai + bw
i,tf

w
t + be

i,tf
e
t + εi,t, (9)

where fw
t and fe

t represent the world and the European factor, respectively, and where the

idiosyncratic terms εi,t can be interpreted as the combination of two effects: country-specific

shocks and, potentially, measurement error. The two factors are separately identified by the

assumption that the loadings be
i,t are set to zero for non-European countries.13 The evolution

of each of the factors and of the idiosyncratic terms are described by equations (6) and (7),

where we set q = 3 and pi = 2. The evolution of the factor loadings and of the stochastic

volatilities are described by equations (5) and (8). In these equations we assume that the

innovations in the factor loadings for the world and the European factors, called ηw
i,t and

ηe
i,t respectively, are independent from each other. Note that this is by no mean key a

identifying assumption, as it is the assumptions that the ηi,ts are independent across i, and

can in principle be relaxed.14 Likewise we assume that the stochastic volatilities for the

world and the European factors, ζw
0,t and ζe

0,t, are also independent from each other.

In our application the drifts in the volatility of the factors, hw
0,t (world) and he

0,t (Eu-

ropean), can capture two distinct phenomena: one is changes in the sensitivity to global

conditions that are common across countries, which may occur if all countries undergo the

same policy/structural transformations; the other is changes in the volatility of international

shocks (say, in commodity price shocks). Changes in the factor loadings bw
i,t (world) and be

i,t

over time may stem from policies adopted by specific countries, or from structural changes
13This approach to identifying “regional” shocks is standard in this literature: see Kose et al. (2003) and

Del Negro and Otrok (2007). Also, we have only one world factor following the results in Kose et al. (2003).
14We chose to keep the ηw

0,t and ηe
0,t uncorrelated to avoid introducing additional free parameters.
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such as increased trade or financial integration of a country with the rest of the world (or Eu-

rope). As we stressed in the previous section, the assumption that changes in the loadings

are independent across i implies that these changes are country-specific in nature. Like-

wise, drifts in the volatility of the idiosyncratic component can be due to policy/structural

transformations that make countries more or less sensitive to domestic shocks, or can be

exogenous.

2.3 Priors

Given the paper’s question – Is there any time-variation? What are its origins? – the key

priors are those for the standard deviations of the innovations to the law of motions of the

loadings ({σηi}n
i=1) and stochastic volatilities ({σζi}n

i=0, where i = 0 denotes the stochastic

volatility for the factors’ law of motion). Our prior for the factor loading and stochastic

volatility innovations embodies the view that both loadings and volatilities evolve slowly

over time and pick up permanent, trend changes, in the economy. Cyclical variation is

designed to be captured by the factors and idiosyncratic terms.

The prior distribution for σηi
is an inverse gamma IG(νηi

, s2
ηi

), that is:

p(σηi |νηi , s
2
ηi

) =
2

Γ(νηi/2)

(νηi

2
s2

ηi

) νηi
2

(σ2
ηi

)−
νηi
2 − 1

2 exp{−νηi

2
s2

ηi

σ2
ηi

}. (10)

Since this prior is conjugate it can be interpreted as having t∗ = 1, .., νηi
fictitious observa-

tions of the innovations to equation (5), such that their average squared sum 1
νηi

∑νηi
t∗=1(bi,t∗−

bi,t∗−1)2 equals s2
ηi

. Hence the prior embodies the belief that the variance of the innovations

equals s2
ηi

, where the strength of the belief increases proportionally with νηi
. Similarly, the

prior distribution for σζi
is an inverse gamma IG(νζi

, s2
ζi

). We express νηi
and νζi

as a frac-

tion of the sample length T to make the weight of the prior relative to the sample explicit.

Our prior for σζi is the same for all idiosyncratic terms (i = 1, .., n) and for the factor (i = 0).

In our baseline prior we set νηi
= .1 × T , s2

ηi
= (.12), νζi

= T , and s2
ζi

= (.0252). Hence

our baseline prior embodies the belief that the amount of time variation in the stochastic

volatilities is smaller relative to that in the loadings. Moreover, our belief is considerably

tighter for the volatilities than for the loadings. We use this prior precisely because it stacks

the deck against finding strong movements in the stochastic volatilities, and in favor of

finding time-variation in the loadings. We checked however for robustness to tighter beliefs

on the time variation in the loadings (νηi = .25 × T, .5 × T, T and s2
ηi

= (.052) and looser

ones on the on the time variation in the volatilities (νζi = .5 × T ). While not surprisingly
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under the alternative priors the loadings are even less time-varying than under the baseline

specification, qualitatively the results do not change.

The priors for the remaining parameters are as follows. The prior for the non time-

varying part of the idiosyncratic volatility σi is also given by an inverse gamma distribution:

IG(νi, s
2
i ). The parameters are chosen so that this prior is quite agnostic: νi = .05× T and

si = 1. The priors on the constant terms are normal ai : Nk(āi, Ā
−1
i ), with mean āi = 2

(the growth rates are annualized) and precision Āi = 1. The prior distribution for the initial

conditions for the loadings, bi,0, are also normal: βi : Nk(β̄i, B̄
−1
i ), with mean β̄i = 0 and

precision B̄i = 1/10. The autoregressive coefficients for the factors and the idiosyncratic

shocks have a normal prior: φi : Nk(φ̄i, V̄
−1
i )ISφi , where φi = (φi,1, .., φi,pi), and ISφi is an

indicator function that places zero prior mass on the region of the parameter space where

things are non stationary. As in Kose, Otrok, and Whiteman (2003) the prior is centered

at φ̄i = {0, 0, .., 0}′, thereby favoring parsimonious specifications. The precision matrix for

the factor’s autoregressive coefficients V̄0 is diagonal with elements proportional to 1/(.75)l,

where l is the lag length. The precision matrix for the idiosyncratic terms’ autoregressive

coefficients V̄i is looser, being equal to .2× V̄0. All priors are mutually independent.

3 Estimation

The model is estimated using a Gibbs sampling procedure. In essence, this amounts to

reducing a complex problem – sampling from the joint posterior distribution – into a se-

quence of tractable ones for which the literature already provides a solution – sampling from

conditional distributions for a subset of the parameters conditional on all the other param-

eters. Our Gibbs sampling procedure reduces to four main blocks. In the first block we

condition on the factors, time-varying loadings, stochastic volatilities, and sample from the

posterior of the constant term ai, the autoregressive parameters {φi,1, . . . , φi,pi
}, and the

non time-varying component of the variance σ2
i . Next, we draw the factors ft conditional

on all other parameters using the state space representation of the model, as in Carter and

Kohn (1994). The third block draws the time-varying loadings bi,t, again using Carter and

Kohn’s algorithm. In this block the factors are treated as known quantities. In the last

block we sample the stochastic volatilities using the procedure of Kim, Sheppard and Chib

(1998). In the remainder of the section we intuitively discuss how we apply existing tech-

niques in the literature to derive the conditional distributions for each block of the Gibbs

sampler. We will stress that the procedure is computationally efficient and can accomodate
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datasets where T and n are relatively large: in most cases the computational cost increases

only linearly in these dimensions. Again, for the sake of exposition we describe the model as

if we had just one common factor. The full derivation of these distributions are provided in

the technical appendix. We use 22000 draws, and discard the first 2000, in the actual imple-

mentation of the Gibbs sampler. We check for convergence by running several replications

and comparing the results.

3.1 Block I: non time-varying parameters

In the first block of the Gibbs Sampler we condition on the factors, the time-varying load-

ings, and the stochastic volatilities and draw the regression parameters that are not time

varying, namely the mean ai, the autoregressive coefficients {φi,1, . . . , φi,pi} of the idiosyn-

cratic component and the non time-varying component of the variance σ2
i . The key insight

from Otrok and Whiteman (1998) is that, conditional on the factors, equation (4) is simply

a regression where the errors follow an AR(p) process given by equation (7). Hence drawing

from the conditional distribution of ai, {φi,1, . . . , φi,pi}, and σ2
i amounts to straightforward

application in Chib and Greenberg (1994). Moreover, conditional on the factors the errors in

equation (4) are independent across i. Therefore the procedure can be implemented one i at

the time, which implies that computational cost is linear in the size of the cross-section. The

presence of stochastic volatility requires a simple modification of the Chib and Greenberg

(1994) procedure: Since the errors in (7) are now heteroskedastic, the posterior distribution

of the parameters of interest now involves a GLS correction. For the sake of exposition we

leave the details of this modification to the appendix (section A.1).

The autoregressive terms in the law of motion of the factors (7) represent another set of

non time-varying parameters. Since we are conditioning on the factors we can again apply

the Chib and Greenberg (1994) procedure as described in Otrok and Whiteman (1998).

Because of stochastic volatility we again need to correct for heteroskedasticity. Section A.2

in the appendix provides the details.

Finally, we derive the posterior distributions for the standard deviations of the in-

novations to the law of motions of the loadings σηi
conditional on the loadings. Given

our assumptions that the shocks to equation (5) are normal, and that the prior is conju-

gate, it follows that this distribution is an inverse gamma IG(νηi + T,
νηi

δ2
ηi

+Td2
i

νηi
+T ) where

d2
i = 1

T

∑T
t=1(bi,t − bi,t−1)2. Similarly, conditional on the stochastic volatilities the pos-

terior distributions for σζi
follows an inverse gamma IG(νζi

+ T,
νζi

δ2
ζi

+Tc2
i

νζi
+T ) where c2

i =
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1
T

∑T
t=1(hi,t − hi,t−1)2. This applies to the idiosyncratic terms (i = 1, .., n) and to the

factors (i = 0).

3.2 Block II: factors

In the second block of the Gibbs sampler we draw the factors conditional on all other param-

eters. Two approaches to drawing the factors exist in the Bayesian factor model literature.

One is the Otrok and Whiteman (1998) approach, which builds on Chib and Greenberg

(1994) to explicitly write the likelihood of the observations yi,t, the prior for the factors

(given by equation 6), and then combining the two to derive the posterior distribution of

{ft}T
t=1. The alternative is to use the state-space representation given by equations (4), (6),

and (7), and apply the algorithm developed by Carter and Kohn (1994) to draw from the

posterior distribution of the factors. The first approach involves inverting size-T matrices,

and hence becomes computationally expensive for large T . In the second approach the di-

mension of the state vector increases with n, since the idiosyncratic terms in (4) are not

i.i.d. Hence this approach is computationally unfeasible for large cross-sections. There-

fore it becomes essential to eliminate the idiosyncratic terms from the state vector if one

wants to estimate data sets where both T and n are potentially large. This is accomplished

by quasi-differencing expression (4) as in Kim and Nelson (1999a) and Sargent and Quah

(1993).

We follow the second approach. We first write the measurement equation (4) in stacked

form:

ỹt = ã + b̃tft + ε̃t for t = 1, .., T (11)

where ỹt = (y1,t, . . . , yn,t)′, ã = (a1, . . . , an)′, b̃t = (b1,t, . . . , bn,t)′, ε̃t = (ε1,t, . . . , εn,t)′. Next

we express the laws of motion of the factor (equation 6) and of the idiosyncratic shocks

(equation 7) in companion form:

f̃t = Φ0f̃t−1 + ũ0,t, (12)

ε̃t = Φ1ε̃t−1 + .. + Φpε̃t−p + ũt, (13)

where f̃t = (ft, .., ft−q+1)′ and ũ0,t = (σ0,tu0,t, 0, .., 0)′ are q × 1 vector, p = maxi=1,..,n(pi),

ũt = (σ1,tu1,t, . . . , σn,tun,t)′, and the Φjs are companion matrices:

Φ0 =

 φ0,1.. φ0,q

Iq−1 0

 , Φi =

 φi,1.. φi,p

Ip−1 0

 . (14)
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We consider the case q − 1 = p (which for convenience is the case in our application) and

define Φ(L) =
∑p

j=1 ΦjL
j . We pre-multiply expression (11) by the matrix In − Φ(L) and

obtain the system:

ỹ∗t = ã∗ + B∗
t f̃t + ũt for t = p+1, .., T (15)

where ỹ∗t = (In − Φ(L))ỹt, ã∗ = (In − Φ(L))ã, f̃t = (ft, .., ft−q+1)′, and:

B∗
t =


b1,t −b1,t−1φ1,1 . . . −b1,t−pφ1,p

...
. . .

...

bn,t −bn,t−1φn,1 . . . −bn,t−pφn,p

 .

The errors in the measurement equation (15) are now i.i.d.. We are then ready to draw the

factors using the Carter and Kohn (1994) procedure, where the transition equation is given

by equation (12). Note that in implementing this procedure the curse of dimensionality

does not bite: The relevant magnitude for most computations is the size of the state space

q × (number of factors). The sample size T increases the computational burden linearly.

The cross-sectional size n only affects the computation of the Kalman gain, as one has to

invert an n× n matrix.

Note that equation (15) naturally starts from t = p + 1 since we are using the first

p observations for pre-whitening. If we were to condition on these first p observations, as

much of the literature does, we would use the mean and variance of the unconditional ergodic

distribution of the state vector f̃t to initialize the Kalman filter. There may be cases where

the initial conditions matter, either because T is not too large (relative to p) or because the

factor is very persistent. Hence we provide in section A.3 of the appendix formulas for the

mean and variance of the state f̃p conditional on the first p observations. We use this mean

and variance as our initial condition.

3.3 Block III: time-varying factor loadings

In the third block of the Gibbs sampler we draw the time-varying loadings {bi,t}n,T
i,t=1 condi-

tional on all other parameters and the factors. Again, conditional on the factors the errors

in the measurement equation (4) are independent across i. Moreover we assumed that the

innovations in the transition equation (5) are independent across i. Consequently, we can

draw the time-varying loadings one equation at a time, which implies that the computa-

tional cost is again linear in n. We deal with the fact that the errors in the measurement

equation (4) are not i.i.d. by applying the quasi differencing operator to each equation,
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obtaining:

y∗i,t = a∗i + ω∗
t b̃i,t + σi,tui,t for t = pi+1, .., T (16)

where y∗i,t = (1 − φi,1L
1 − .. − φi,pi

Lpi)yi,t, a∗i = (1 − φi,1 − .. − φi,pi
)a, ω∗

t = (ft, −

φi,1ft−1, .., − φi,pi
ft−pi

), b̃i,t = (bi,t, . . . , bi,t−pi
)′. The transition equation is simply ex-

pression (5) written to accommodate b̃i,t:

b̃i,t = Ξb̃i,t−1 + η̃i,t (17)

where η̃i,t = (ηi,t, 0, . . . , 0) and

Ξ =

 1 0 . . . 0

Ipi
0

 .

Note that the first t considered in equation (16) is t = pi +1. As with the case of the factors

we derive formulas for the mean and variance of the state b̃i,pi conditional on the first p

observations (see section A.4 in the appendix).

3.4 Block IV: stochastic volatilities

The final block of the Gibbs partition draws the stochastic volatilities {σi,t}n,T
i=1,t=1 condi-

tional on all other parameters. Our procedure follows the algorithm developed by Kim,

Sheppard, and Chib (1998). If we define zi,t as the innovation to the law of motion of the

idiosyncratic terms (7):

zi,t = εi,t − φi,1εi,t−1 ..− φi,pi
εi,t−pi

. (18)

by construction we have:

zi,t = σie
hi,tui,t. (19)

Conditional on data, factors, loadings, and all other parameters, the zi,t are known quantities

for t ≥ pi + 1. For t = 1, .., pi expression (18) involves the terms (εi,0, . . . , εi,1−pi
), which we

do not have. Therefore we draw these terms using the law of motion (7) (see section A.5 in

the appendix). Conditional on these draws all the zi,t are known quantities. At this point

we can apply the algorithm in Kim et al. (1998) equations (19) and (8). Section A.6 in the

appendix briefly reviews their approach. We can do this one equation at the time given that

the shocks to the law of motion of the stochastic volatilities are assumed to be independent

across i. The stochastic volatility terms for the factors’ law of motion (6) are drawn in an

analogous manner (details are in section A.7 of the appendix).
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4 Empirical Results

We use our econometric model to study the evolution of international business cycles for

developed countries. We focus on three phenomena, two of which have been investigated in

the literature, and one that to our knowledge has not been discussed before. The first phe-

nomenon is the great moderation (section 4.2). We use our model to determine the extent

and timing of the moderation for each country, and its source, whether international or do-

mestic. The second phenomenon is the change in comovement/correlations across countries

(section 4.3). In both dimensions, our contribution relative to the existing literature is that

we use a flexible specification which does not assume that changes in volatility or synchro-

nization occur for all countries at the same time, and yet considers all countries jointly. The

third phenomenon is the decline in the cross-country dispersion of output volatility across

country (section 4.4), which is a novel finding. We show that this convergence in volatility

is driven by both the international and the country-specific component of business cycles.

We conclude the description of the empirical results by contrasting the US and Japanese

experience (section 4.5), and by providing some evidence on the factor model’s ability of

describing comovement (section 4.6).

4.1 The Data

The data are real GDP for 19 countries: U.S., Canada, Japan, Australia, New Zealand,

Austria, U.K., Belgium, Denmark, France, Germany, Ireland, Italy, Netherlands, Norway,

Sweden, Switzerland, Finland, Spain. The data are quarterly and cover the period 1970:1-

2005:4. The source for the data is the IMF International Financial Statistics database. The

level series were converted to one quarter growth rates and then annualized. The German

reunification presents a significant outlier in the dataset which would be difficult for any

econometric model to match and is considered a one time aberration which is outside of the

scope of the model or the regular data generating process. We follow Stock and Watson

(2005) and replace the 1991:1 data point with the median of GDP growth in German growth

time series.

4.2 The Great Moderation Across Countries

Figure 2 and Table 1 provide evidence on the Great Moderation for the G7 and for all

countries in our sample, respectively. For each of the G7 countries the shaded areas in
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Figure 2 show the variance attributable to international business cycles (black), European

business cycles (gray), and country-specific fluctuations (white). For each point in time,

each country, and each MCMC draw the variance attributable to international (European)

business cycles is computed by multiplying βw 2
i,t (βe 2

i,t ) times the variance of the factor, com-

puted from equation (6) using the time t estimate of the factor’s stochastic volatility (h0,t).

Likewise, the variance attributable to country-specific cycles is computed from equation (7)

using the time t estimate of the idiosyncratic component’s stochastic volatility (hi,t). The

Figure shows the median across all draws. Given the assumption of independence between

factors and country-specific shocks, the sum of the variance attributed to each component

equals the overall variance of output growth for country i at each point in time computed

according to the factor model. If we compare the overall volatilities implied by the factor

model shown in Figure 2 with the rolling window volatilities shown in Figure 1, we find

that quantitatively the two are very similar (although the objects are of course different,

one being the variance over the previous ten years and the other being the variance at a

given point in time).

Figure 2 shows that while the decline in volatility is a global phenomenon, there is much

heterogeneity across countries as to the magnitude, timing, and source of the moderation.

In terms of timing, for the US the great moderation largely takes place in the eighties.

For the UK, Italy, and Canada, it appears to be a gradual phenomenon beginning in the

mid-seventies, although for the UK the bulk of the moderation again occurs in the eighties.

For Germany the moderation occurs mainly in the nineties, while for Japan and France

the decline in volatility is pretty much over by 1980. In terms of magnitude the US, UK,

and Canada stand out relative to the other G7 countries. In terms of sources, for most

G7 countries both the volatility attributable to international business cycles and country-

specific fluctuations drop. In relative terms, the moderation due to international shocks is

particularly important for the US, Canada, and Germany, while in the UK and Italy the

moderation is mainly due to country specific shocks. In Japan and France, conversely, there

is no decline in the volatility of the country specific component.

It is interesting to contrast the evolution of the volatility attributed to the world factor

for different countries. For the US this volatility is constant through the seventies, and

starts declining only in the 1980s. For Japan, the decline occurs in the seventies. If changes

in the variance of oil shocks, or other common shocks, were the only explanation for why the

variance attributed to the world factor has dropped across countries, we would not expect

such heterogeneity. In section 4.5 we will return to this issue in discussing the US and
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Japanese experience in more details.

The evidence in Figure 2 is confined to the G7 countries, and does not provide infor-

mation about the estimation uncertainty (both for expositional reasons). Table 1 completes

the picture. The table contains six snapshots of the magnitudes shown in Figure 2, e.g.

the variance attributable to world, European, and country-specific cycles, for each country

in the sample: 1970-Q2 (beginning of the sample), 1980-Q1, 1985-Q1, 1990-Q1, 1995-Q1,

and 2005-Q4 (end of the sample). The line Total shows the overall variance, computed as

the sum of the variances attributed to each component (we take the sum for each MCMC

draw and show the median value). The figures in parenthesis represent the 90% posterior

bands. We test whether for any date the variance (either total or that attributed to each

component) is lower than at the beginning of the sample: bold-faced numbers indicate that

the variance has significantly declined (at the 10% level) relative to the beginning of the

sample. Underlined numbers indicate that the variance has significantly declined (at the

10% level) relative to the previous date.

Table 1 shows that for only five countries out of 19 the decline in overall volatility relative

to 1970 is not statistically significant, all of them European: Denmark, Finland, Ireland,

Switzerland, and Spain (in Denmark and Spain the volatility significantly declines relative

from the eighties to the nineties, however). For the G7 countries the results largely confirm

that the findings in Figure 2 are statistically significant. For the US the decline in volatility

occurs in the eighties, and it applies to both the international and domestic component.

For Japan there is a statistically significant decline in volatility relative to 1970, but it is

all due to a decline in the international component during the seventies. Canada, Germany,

and France are the only other countries where the decline in the international component

is statistically significant. For all other countries the moderation arises from a decline in

the importance of the country-specific component. For a few countries like New Zealand,

Norway, and Ireland, the size of the country specific component at the beginning (New

Zealand, Norway) or at the end (Ireland) of the sample is so large that we suspect presence

of measurement error. While our methodology can fully accommodate time-variation in

the importance of measurement error, we cannot tell it apart from country-specific business

cycles.

In summary, we provide statistical evidence supporting Blanchard and Simon’s findings

that i) the great moderation is a worldwide phenomenon, and ii) there is substantial cross-

countries heterogeneity in the timing and magnitude of the moderation. In addition, we

show there is much heterogeneity in the source of the moderation, whether domestic or
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international. As we mentioned in the introduction, it is difficult to discriminate between

good policy (or different structure) and good luck explanations of the great moderation

using reduced form models like this one. When we find that the volatility of country-

specific fluctuations has decreased, we do not know whether the the variance of the primitive

shocks has decreased, or whether changes in policy/structure have reduced to sensitivity of

the economy to such shocks. Likewise we may think that a decline in the volatility of

international shocks (common productivity shocks, energy shocks) underlies the drop in the

variance attributed to attributed to international business cycles. Yet we find that this drop

occurs at different times for different countries. This finding suggests that policy/structure

may have played a role in the great moderation.

4.3 Time-Varying Comovement

The traditional approach to measuring comovement is to calculate pairwise correlations

of variables directly from the data. Here we calculate a natural counterpart, the implied

pairwise correlation from our model. To do so, at each point in time, and for each MCMC

draw, we compute all pair-wise correlations implied by the factor model using the time

t estimates of the loadings and stochastic volatilities. Figure 3 plots the (unweighted)

average cross-country correlation for four different groups of countries: G7, all countries in

our sample, European countries (whether or not part of the European Community), and

countries that have joined the Euro. The Figure plots the median and the 90% bands of

this average. Our calculation may depart from correlations calculated from the data if we

have omitted factors that explain the covariance structure in the data. For example, if

there is a common factor between the US and Canada, which we have not included in our

model, then our correlation calculation will understate the comovement between the US

and Canada. However, we are primarily concerned with changes over time, not the absolute

level of comovement. Therefore this issue is only problematic if the omitted factors change

in importance over time.

Figure 3 shows that on average cross-country correlations have either declined or re-

mained the same over time, depending on the group. For G7 countries the average correla-

tion has declined from a median of .25 at the beginning of the sample to below .1 in 2005.

Interestingly, by the end of the sample the 90% bands include zero. Much of the decline

(about .1) occurs between the seventies and the eighties, while the remainder occurred dur-

ing the nineties. The decline is statistically significant: since the early nineties more than

90% of posterior draws indicate that the correlation has declined relative to the beginning
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of the sample. Heathcote and Perri (2004), who first pointed out the drop in cross-country

correlations (their dataset included the US and an aggregate of Europe and Japan), claimed

that the phenomenon is related to the increased international financial integration occurred

since the mid 1980s. We find that there is some evidence the average correlation has de-

clined since – say – 1984-Q1, but it is not overwhelming: the difference is negative for 83%

of posterior draws.

The upper-right panel of Figure 3 shows that the average correlation for the entire

set of countries has not changed at all in the past 35 years, indicating that changes in

international comovements have been mainly confined to large countries. Interestingly, the

same applies to European (lower-left panel) and Euro (lower-right panel) countries. The

process of economic and (for Euro countries) monetary integration has brought no discernible

change in comovements.

Another interesting feature of Figure 3 is that the average cross-country correlation

seems to decrease as we consider groups of countries that, a priori, are more integrated. The

median average correlation for “All countries” is .15; the corresponding figure for “European

Countries” and “Euro Countries” is .1 and .05, respectively. In principle, this finding is not

at odds with economic theory: High capital mobility across countries implies that resources

flow at any point in time from the least to the most productive countries, generating a

negative correlation in output (see Backus, Kehoe, and Kydland 1993). The theory is harder

to reconcile with the time series evidence however: Integration has supposedly increased over

time, especially in Europe, but the average cross-country correlation has not declined.

A second approach to characterize comovement is to follow the factor model literature

(Kose, Otrok, and Whiteman 2003, 2008) and compute the relative importance of common

shocks in explaining the variance of macroeconomic aggregates. Since we have a time-varying

model, we can show how this variance decomposition, and hence the degree of comovement,

evolves over time. The variance decomposition for variable i takes the factor loading at time

t, times the model implied variance at time t of the factor, divided by the model implied

variance of the variable itself at time t. Table 2 shows the variance attributable to world,

European, and country-specific cycles as a fraction of the total variance for each country in

the sample for the same dates as in Table 1: 1970-Q2 (beginning of the sample), 1980-Q1,

1985-Q1, 1990-Q1, 1995-Q1, and 2005-Q4 (end of the sample). All figures are in percent, and

numbers in parenthesis represent the 90% posterior bands. We are also interested in testing

whether any change in the variance decomposition over time is statistically significant.

To this effect, bold-faced figures indicate that the change in the fraction of the variance
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explained by each component relative to the beginning of the sample is significant at the

10% level. Underlined figures indicate that the change relative to the previous date is

significant at the 10% level.

Table 2 shows that for the full set of countries the evidence on changes in the importance

of global business cycles is mixed. On average the change is approximately zero. However

when considering only the G-7 countries we see an average decline of 12 percent for the world

factor. This result is consistent with the subsample analysis in Kose, Otrok and Whiteman

(2008), although we find that only for Japan the importance of the world component has

shrunk significantly relative to that of the country-specific one. For most other countries

there have been no statistically significant significant changes in the variance decomposition.

In conclusion, there is little statistical evidence that international business cycles are more

or less important now than they were thirty-five years ago, except for G7 countries, some of

which have become less integrated, and for a few other countries like Sweden, which have

become more integrated. The same applies to the European cycle, which has significantly

grown in importance only for the Netherlands. It appears that the wide array of structural

changes that took place in Europe the past quarter of a century, namely increased trade

and financial integration and coordination of monetary policies, has not resulted in a Euro

specific cycle.

4.4 Convergence in the the Volatility of Business Cycles Across

Countries

Have there been any significant changes in business cycles other than the decline in volatility?

This section argues that there has been another important change in business cycles across

developed countries which to our knowledge has not been previously been documented:

Business cycles have become more similar across countries. More specifically, there has

been a convergence in the volatility of fluctuations in activity across developed economies.

Figure 4 shows the evolution over time of the cross-sectional standard deviation in

output growth volatility for three groups of countries: G7, all the countries in our sample,

and all the countries but those for which volatility at any point in time has been particularly

high, namely Norway, New Zealand, and Ireland. Our factor model decomposes volatility

into two components, one due to international business cycles and the other due to country-

specific fluctuations. We want to understand whether the convergence in volatility is due

to one or the other, that is, whether the impact of common shocks is more similar across
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countries, or whether country-specific cycles have become more similar in magnitude. For

each group of countries we therefore show the cross-sectional standard deviation of the

volatility attributed to each component.

Specifically, for each MCMC draw, period, and country we compute the model-implied

volatility, as described in the previous sections. We then take the cross-sectional standard

deviation of volatilities within each group. We show the median across MCMC draws and

the 90% bands (shaded area). We are also interested in determining whether the decline in

the cross-sectional standard deviation relative to the beginning of the sample is statistically

significant. The median is shown as a solid line whenever the decline is significant at the

10% level, and as a dashed line otherwise.

Figure 4 shows the cross-sectional dispersion in volatilities has declined significantly

since the 1970s for all groups of countries we consider. The source and the timing of the

convergence differ among groups however. For the G7 economies, convergence is largely a

side-product of the end of the seventies: from 1980 onward the dispersion barely declines.

Also, convergence is mostly due to the impact of international business cycles, which has

apparently become more similar across countries. The dispersion due to country-specific

fluctuations has also declined for G7 countries, but not as much and not as significantly.

For all countries in the sample, there is a significant decline in the dispersion for both the

international and country-specific component. Quantitatively, the latter is by far the most

important however. Also, a large component of the decline occurs after the seventies.

One concern for the “All countries” results is that they may be in part driven by

measurement error: The volatility of real GDP in Norway and New Zealand at the beginning

of the sample, and that of Ireland by the end of the sample, is almost one order of magnitude

larger than that of the other countries (see Table 1). For this reason the bottom plots

show the time-variation in the cross-sectional dispersion in volatilities without these three

countries. Quantitatively this clearly makes a substantial difference. Qualitatively however

the decline in the dispersion is still there, and is statistically significant. The decline is of

about four percentage points, about the same magnitude as for G7 countries. Unlike for G7

countries, the drop in dispersion is a statistically significant feature both the common and

the country-specific component. Moreover, there are differences in the timing of the decline,

which for all countries persists beyond the seventies. In principle one could still argue that

perhaps changes in the variance of the measurement error drive these results, even if we do

not consider Norway, new Zealand and Ireland. As long as measurement error is country

specific, we can rule out this explanation for the international business cycles component.
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4.5 The United States and Japan: A Study in Contrasts

The previous sections focused on the posterior distribution of the objects of interest, namely

the time-varying volatilities due to international cycles and country-specific fluctuations, and

the cross-country correlations. We have so far not shown the evolution of the underlying pa-

rameters of the factor model. Since showing the time-varying volatilities and factor loadings

for all 19 countries is unfeasible from an expositional standpoint (the results are available

upon request), we will show these parameters for two countries that are of particular interest:

the US and Japan.

Figure 5 plots the time-varying loadings to the world factor (top) and standard devi-

ations of the country-specific component (bottom) for the two countries. To highlight the

percentage reduction (or increase) in the standard deviations, and the extent to which these

are statistically significant, we show the standard deviations relative to the first period, e.g.

σi,t/σi,1. The solid lines show the median and the shaded areas and dotted lines represent

the 68 and 90% bands, respectively.

The interesting feature of the US results is that the exposure to world business cycles

and the standard deviation of country-specific shocks both begin their decline at roughly the

same time, in the early eighties. Both experience a sharp drop for a decade, and then stay

constant or decline modestly for the remainder of the sample. Recall that changes in the

exposures capture developments that are specific to the US economy, as opposed to changes

in the standard deviation of the world factor, which affect all countries. One interpretation

of this finding is that the twin decline is a mere coincidence: The US became less exposed

to international shocks just as domestic shocks became less severe. Another interpretation

is that changes in policy or in the structure of the economy drive both phenomena. We

cannot tell one from the other. But our findings are consistent with the policy/structure

view of the great moderation.

Japan’s experience stands in contrast to the US one. Japan’s economy appears to

progressively decouple from the rest of the world from the mid-seventies onward. By the

end of the sample its exposure to world business cycles is not statistically different from

zero. The decline in the sensitivity to world shocks is not accompanied by a corresponding

decline in the sensitivity to domestic ones, as in the US case. Consistently with Figure 1,

the variance of country-specific fluctuations stays roughly constant all through the period.
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4.6 Does the Factor Model Capture Comovement?

So far we have presented no evidence that what we have been referring to as international

business cycles actually captures comovement across countries. The top panel of Figure 6

provides a bird’s eye view of the data, as it plots the demeaned real GDP growth rates for the

19 countries in the sample. The decline in output volatility between the first to the second

half of the sample is apparent from the picture: Not only in the second half of the sample

the large swings that characterize the first half are absent (with the exception of Ireland,

represented by the dotted line), but also fluctuations appear to be generally smaller in size.

It is also apparent that countries’ output growth move together, both during recessions (e.g.,

in the mid-seventies) and booms (e.g., in the nineties), although this covariation is obscured

by the high-frequency component of fluctuations.

The next two panels of Figure 6 use the factor model to decompose these fluctuations

into two components: international business cycles (middle panel) and country-specific

shocks (lower panel). International business cycles and country specific fluctuations are

captured by the terms bw
i,tf

w
t + be

i,tf
e
t and εi,t in equation (9), respectively (Figure 6 plots

the posterior medians of these magnitudes for each country). Three features emerge from

Figure 6: First, international business cycles are more persistent than country-specific fluc-

tuations. Second, there is a decline in the volatility of both components, consistently with

the results shown before. Third, there are no discernible comovements in the idiosyncratic

components εi,t, suggesting that the World and European factors indeed capture cycles that

are common across countries.

5 Conclusions

The paper developed and estimated a dynamic factor model with time-varying factor load-

ings and stochastic volatility in the innovations to both the common factors and idiosyn-

cratic components. We use the model as a measurement tool to characterize the evolution

of international business cycles since 1970.

There are many other potential applications of our methodology. Within the inter-

national business cycle literature the model is well suited to address issues linking trade

and financial agreements with the impact this has on both comovement of both real and

financial variables. Our model, which explicitly allows for changes in factor loadings is a
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natural framework to analyze recent policy debates on the supposed ‘decoupling’ of emerging

markets economies.

A second area to apply our model is the forecasting literature, which has long used

factor models to improve forecast accuracy. Given the observed evolving dynamics in infla-

tion, interest rates and macroeconomic aggregates we suspect that our model will help to

further improve out-of-sample forecast accuracy. The ability of our models’ parameters to

evolve over time to match changing relationships in the data should be the source of this

improvement.

Although in this paper we take our model to macro data, the econometric model also has

many applications in finance. Factor models have long been used in that literature for both

pricing asset and for portfolio allocation. In a paper similar in spirit to our work Han(2005)

develops a latent factor model with stochastic volatility and shows that the dynamic port-

folio strategy suggested by the model outperforms (in risk-return space) other allocation

strategies. Our model would allow one to develop dynamic allocation strategies where one

would also allow risk sensitivities to assets to vary over time. In the term structure, litera-

ture Diebold, Li and Yu (2007) study the properties of the global term structure of interest

rates using a latent factor model. Interestingly, they estimate their fixed-parameter con-

stant volatility model on two subsamples of the data and document a changing nature of

international yield curve dynamics. Their term structure factor model would be a natural

application for our methodology, both because their subsample analysis reveals interesting

changes in yield curve dynamics, and because it is natural to use models with time-varying

volatility to capture time-varying risk premia.

6 References

Ahmed, Shaghil, Andrew Levin, and Beth Anne Wilson, 2004, “Recent U.S. Macroeco-

nomic Stability: Good Policies, Good Practices, or Good Luck?”, The Review of

Economics and Statistics, 86(3): 824-832.

Altug, Sumru. 1989. “Time-to-Build and Aggregate Fluctuations: Some New Evidence.”

International Economic Review 30 (4), 889-920.

Bai, Jushan, and Serena Ng, 2002, ”‘Determining the Number of factors in Approximate

Factor Models,”’ Econometrica, vol 70, no 1, pp 191-221.



25

Blanchard, Olivier and John Simon. 2001. “The Long and Large Decline in U.S. Output

Volatility.” Brookings Papers on Economic Activity 1, 135-64.

Carter, C.K. and R. Kohn. 1994. “On Gibbs sampling for state space models.” Biometrika

81(3), 541-553.

Chib, Siddhartha and Edward Greenberg. 1994. “Bayes inferences in regression models

with ARMA(p,q) errors.” Journal of Econometrics 64,183-206.

Cogley, Timothy and Thomas J. Sargent. 2001. “Evolving Post-World War II U.S. Inflation

Dynamics.” NBER Macroeconomics Annual, Volume 16. Cambridge and London:

MIT Press, 331-73.

Cogley, Timothy and Thomas J. Sargent. 2005, “Drifts and Volatilities: Monetary Policies

and Outcomes in the Post WWII US.” Review of Economic Dynamics, 8 (2), 262-302

Chauvet, Marcelle and Simon Potter. 2001. “Recent Changes in the U.S. Business Cycle.

” The Manchester School, 69 (5), 481-508.

Del Negro, Marco and Christopher Otrok. 2003. “Time-Varying European Business Cy-

cles.” Mimeo, University of Virginia.

Del Negro, Marco and Christopher Otrok. 2007. “99 Luftballons: Monetary policy and

the house price boom across U.S. states, ” Journal of Monetary Economics 54 (7),

1962-1985.

Diebold, Francis, Canlin Yi and Vivian Yue. 2007. “Global Yield Curve Dynamics and

Interactions: A Generalized Nelson-Siegel Approach,” Journal of Econometrics, Forth-

coming.

Doyle, Brian M. and Jon Faust. 2005. “Breaks in the Variability and Comovement of G-7

Economic Growth.” Review of Economics and Statistics, 87 (4), 721-40.

Doz, C., Giannone, D., Reichlin, L., 2006. “A Quasi-Maximum Likelihood Approach For

Large Approximate Dynamic Factor Models.” CEPR Discussion Paper 5724.

Forni, Mario, and Lucrezia Reichlin. 1998. “Let’s get real: a factor analytic approach to

business cycle dynamics.” Review of Economic Studies (65), 453-473.

Forni, Mario, and Lucrezia Reichlin. 2001. “Federal Policies and Local Economies: Europe

and the U.S.” European Economic Review 45, 109-134.



26

Forni, Mario, Marc Hallin, Marco Lippi, and Lucrezia Reichlin. 2001. “The Generalized

Dynamic Factor Model: identification and estimation.” Review of Economics and

Statistics 82, 540-554.

Forni, Mario, Marc Hallin, Marco Lippi, and Lucrezia Reichlin. 2005. “The General-

ized Dynamic Factor Model: One-Sided Estimation and Forecasting.” Journal of the

American Statistical Association 100 (471), 830-40.

Gali, Jordi and Luca Gambetti, 2007, ”‘On The Sources of the Great Moderation,”’

Manuscript.‘

Giannone, Domenico, Michele lenza, Lucrezia Reichlin. 2008. “Explaining the Great

Moderation: It Is Not the Shocks.” ECB Working paper series 865.

Hamilton, James D., Daniel F. Waggoner, and Tao Zha. 2007. “Normalization in Econo-

metrics.” Econometric Reviews, 26, 221-252.

Han, Yufeng. 2006. “Asset Allocation with a High Dimensional Latent Factor Stochastic

Volatility Model,” Review of Financial Studies, 19, 1.

Heathcote, Jonathan and Fabrizio Perri. 2004. “Financial Globalization and Real Region-

alization.” Journal of Economic Theory 119 (1), 207-43.

Jaimovich, Nir, and Henry E. Siu, 2007. “The Young, the Old, and the Restless: De-

mographics and Business Cycle Volatility.” Manuscript. Stanford University and

University of British Columbia.

Justiniano, Alejandro and Giorgio E. Primiceri. 2006. “The Time Varying Volatility of

Macroeconomic Fluctuations.” NBER Working Paper 12022.

Kahn, James A., Margaret M. McConnell, and Gabriel Perez-Quiros, 2002, “On the Causes

of the Increased Stability of the U.S. Economy,”’ FRBNY Economic Policy Review.

Kim, Chang-Jin, and Charles R. Nelson. 1999a. “Has the U.S. Economy Become More

Stable? A Bayesian Approach Based on a Markov-Switching Model of the Business

Cycle.” Review of Economics and Statistics 81 (4), 608-16.

Kim, Chang-Jin, and Charles R. Nelson. 1999b. “State-space models with regime switch-

ing.” The MIT Press. Cambridge, Massachusetts.



27

Kim, Sanjoon, Neil Sheppard and Siddhartha Chib, 1998, “Stochastic Volatility: Likeli-

hood Inference and Comparison with ARCH Models,” Review of Economic Studies,

65, 361-393.

Kose, M. Ayhan, Christopher Otrok, and Charles H. Whiteman, 2003. “International

Business Cycles: World, Region and Country Specific Factors.” American Economic

Review, September.

Kose, M. Ayhan, Christopher Otrok, and Charles H. Whiteman, 2007. “Understanding the

Evolution of World Business Cycles” Journal of International Economics, forthcoming

McConnell, Margaret M.and Gabriel Perez-Quiros. 2000. “Output Fluctuations in the

United States: What Has Changed since the Early 1980’s?” American Economic

Review 90 (5), 1464-76.

Mumtaz, Haroon and Paolo Surico. 2006. “Evolving International Inflation Dynamics:

World and Country Specific Factors.” Mimeo, Bank of England.

Otrok, Christopher and Charles H. Whiteman, 1998. “Bayesian leading indicators: mea-

suring and predicting economic conditions in Iowa.” International Economic Review

39 (4), 997-1014.

Primiceri, Giorgio E.. 2005. “Time Varying Structural Vector Autoregressions and Mone-

tary Policy” Review of Economic Studies, 72 (3), 821-52.

Quah, D. and T.J. Sargent (1993), ”A Dynamic Index Model for Large Cross Sections,”

in J. Stock and M. Watson (eds.), New Research on Business Cycles, Indicators and

Forecasting. New York: National Bureau of Economic Research.

Sargent, Thomas J., 1989, ’Two Models of Measurements and the Investment Accelerator’,

Journal of Political Economy, vol 97 no 2.

Sims, Christopher A. and Tao Zha. 2006. “Were There Regime Switches in U.S. Monetary

Policy?” American Economic Review, 96 (1), 54-81.

Stock, James H., and Mark H. Watson. 1989. “New indices of coincident and leading

indicators.” NBER Macroeconomics Annual, Cambridge and London: MIT Press,

351-393.

Stock, James H., and Mark H. Watson. 1999. “Forecasting Inflation.” Journal of Monetary

Economics 44 (2), 293-335.



28

Stock, James H., and Mark H. Watson. 2002a. “Macroeconomic Forecasting Using Diffu-

sion indexes.” Journal of Business and Economic Statistics, Vol2 20 No 2, pp 147-162.

Stock, James H., and Mark H. Watson. 2002b. “Has the Business Cycle Changed and

Why?” NBER macroeconomics annual Volume 17. Cambridge and London: MIT

Press, 159-218.

Stock, James H., and Mark H. Watson. 2005. “Understanding Changes in International

Business Cycle Dynamics.” Journal of the European Economic Association, 3 (5),

968-1006.

Stock, James H., and Mark H. Watson. 2007. “Forecasting in Dynamic Factor Models

Subject to Structural Instability.” Mimeo, Harvard and Princeton Universities.

Summers, Peter M., 2005, ”‘What Caused the Great Moderation? Some Cross Country

Evidence,”’ Federal Reserve Bank of Kansas City Economic Review, v 90 no 3.



29

A Details of the Gibbs Sampler

A.1 Conditional distribution of {ai, φi,1, . . . , φi,pi
, σ2

i }n
i=1

In this step of the Gibbs Sampler we condition on the factors, the parameters bi,t, for t = 1, .., T ; i =

1, .., n, and the stochastic volatilities hi,t. The presence of stochastic volatilities forces us to slightly

modify the Chib and Greenberg (1994) procedure.

The likelihood of the first pi observations is more convoluted than in Chib and Greenberg

(section ??). We want to write the joint distribution of ε̃i,pi = [εi,pi ... εi,1]
′, where from the

measurement equation εi,t = yi,t − ai − bi,tft. Define the companion matrix as:

Φi =

24 φi,1.. φi,pi

Ipi−1 0

35 (pi × pi). (20)

We can then write the law of motion of the vector ε̃i,t = [εi,t . . . εi,t−pi+1]
′ as an AR process in

companion form:

ε̃i,t = Φiε̃i,t−1 + σi,t e1 ui,t (21)

where e1 represents the vector [1 0 ... 0]′. We assume that for t ≤ 0 (that is, before the sample) the

idiosyncratic shocks are generated from a constant volatility model, i.e. hi,t = 0, σi,t = σi, t ≤ 0.

Under this assumption the vector: ε̃i,0 = [εi,0..εi,−pi+1]
′ is generated from a stationary distribution.

Hence we can express its unconditional distribution as:

ε̃i,0 ∼ N(0, σ2
i Σi), (22)

where Σi is the solution of the Lyapunov equation implied by 21 for t ≤ 0. Using 21 we can also

derive the distribution of ε̃i,pi = [εi,pi ..εi,1]
′ as:

ε̃i,pi = Φpi
i ε̃i,0 + σi,pie1ui,pi + σi,pi−1Φie1ui,pi−1 + · · ·+ σi,1Φ

pi−1
i e1ui,1. (23)

The above equations can be rewritten as:

ε̃i,pi = Φpi
i ε̃i,0 + σi

h
ehi,pi e1 | ehi,pi−1Φie1 | . . . | ehi,1Φpi−1

i e1

i
| {z }

Zi

26666664
ui,p

..

ui,2

ui,1

37777775 (24)

Define ỹi,pi = [(yi,pi − bi,pifpi) . . . (yi,1 − bi,1f1)]
′ and x̃pi a pi unit vector. Now define

Si = Φpi
i ΣiΦ

pi
′

i + ZiZ ′
i (25)

and Qi the Choleski decomposition of Si (Si = QiQ′
i). Note that if you use the transformed

variables ỹ∗i,1 = Q−1
i ỹi,1 and x̃∗

i,1 = Q−1
i x̃pi you can write the likelihood of the first pi observations,
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conditional on the factors and the time-varying loadings and variances, as:

L(ỹi,pi |...) = (2πσ2
i )−pi/2|Si|−1/2 exp{− 1

2σ2
i
(ỹ∗i,pi

− x̃piai)
′S−1

i (ỹ∗i,pi
− x̃piai)}

= (2πσ2
i )−pi/2|Qi|−1 exp{− 1

2σ2
i
(ỹ∗i,pi

− x̃∗
pi

ai)
′(ỹ∗i,pi

− x̃∗
pi

ai)}.
(26)

The likelihood for the last T − pi observations conditional on the first pi does not pose any

problem. For each i, the likelihood of yi,t conditional on the previous pi observations is given by:

L(yi,t|ft, bt, .., y0,t−pi , yi,t−1, .., yi,t−pi) =

= (2πσ2
i,t)

−1/2 exp{− 1
2σ2

i,t
(yi,t − ŷi,t|t−1)

2}

= (2πσ2
i e2hi,t)−1/2 exp{− 1

2σ2
i

„
yi,t − ŷi,t|t−1

ehi,t

«2

}

(27)

where ŷi,t|t−1 = ai + bi,tft + φ1(yi,t−1 − ai − bi,t−1ft−1) + .. + φpi(yi,t−pi − ai − bi,t−pift−pi). One

can write this expression as a function of either ai or φi, i = 1, .., pi and derive the posterior of these

parameters.

Rearranging 27 we can write the likelihood for the last T − pi observations can be written (see

section ?? for more details) as a function of ai:

L(yi,pi+1, .., yi,T |ϕ, yi,1, .., yi,pi , . . . ) ∝ exp{− 1

2σ2
i

(ỹ∗i,2 − x̃∗
i,2ai)

′(ỹ∗i,2 − x̃∗
i,2ai)} (28)

where ỹ∗i,2 is a T − pi × 1 vector with elements φi(L)(yi,t − bi,tft)/ehi,t , and x̃∗
i,2 is a T − pi × 1

matrix whose rows are given by the vector [φi(1)/ehi,t ] (essentially we estimate the ai coefficients

by GLS rather than OLS). Define

ỹ∗i =

24 ỹ∗i,1

ỹ∗i,2

35 (T × 1), x̃∗
i =

24 x̃∗
i,1

x̃∗
i,2

35 (T × 2).

Combining 29 with 26 and the prior for ai it is now easy to see that the posterior for ai, conditional

on the factor and all other parameters, is given by:

ai| · · · ∼ Nk(A−1
i (Āiāi + σ−2

i x̃∗′
i ỹ∗i ), A−1

i )

with Ai = Āi + σ−2
i x̃∗′

i x̃∗
i . Combining 29 with 26 and the prior for σ2

i one obtains the posterior for

σ2
i , conditional on the factor and all other parameters:

σ2
i | · · · ∼ IG(

ν̄i + T

2
, δ̄2

i + d2
i )

where d2
i = (ỹ∗i − x̃∗

i ai)
′(ỹ∗i − x̃∗

i ai).

Now we focus on the posterior for φi, i = 1, .., pi. Define

ei,t = yi,t − ai − bi,tft

and note that:

yi,t − ŷi,t|t−1 = ei,t − φ1ei,t−1...− φpiei,t−pi .
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This implies that 27 can be expressed as a function of the es and the φs:

L(yi,pi+1, .., yi,T |ϕ, ỹi,1, f̃1) ∝ exp{− 1

2σ2
i

(ei − Eiφi)
′(ei − Eiφi)} (29)

where ei = (ei,pi+1/σi,pi+1, , .., ei,T /σi,T )′ is a T − pi × 1 vector and Ei is a T − pi × pi matrix

whose tth row is given by the 1× pi vector (ei,t−1/σi,t, .., ei,t−pi/σi,t). Combining 29 with 26 and

the prior for φi one finds the posterior for φi, conditional on the factor and all other parameters:

φi| · · · ∝ Ψi(φi)×Npi(Φ
−1
i (Φ̄iφ̄i + σ−2

i E′
iei), Φ

−1
i )ISφi

where Φi = Φ̄i + σ−2
i E′

iEi and Ψi(φi) comes from 26:

Ψi(φi) = |Si|−1/2 exp{− 1

2σ2
i

(ỹ∗i,pi
− x̃piai)

′S−1
i (ỹ∗i,pi

− x̃piai)}.

In the MCMC iteration q we can generate the draw φq
i from Npi(..)ISφi and then accept them with

probability min

„
Ψi(φ

q
i )

Ψi(φ
q−1
i )

, 1

«
.

A.2 Conditional distribution of {φ0,1, . . . , φ0,q}

The conditional distribution of the φ0,q = {φ0,1, . . . , φ0,q}′ can be derived by a straightforward

modification of the procedure in Otrok and Whiteman (1998) that takes the stochastic volatilities

into account. Note that φ0 does not enter the likelihood - φ0 enters only the prior distribution of

the factors. The model 6 implies that such prior is proportional to:

L(f̃ |φ0) = L(f̃1|φ0)× L(f̃2|φ0)

= (2π)−p0/2|Σ0|−1/2 exp{− 1
2
f̃ ′
1Σ

−1
0 f̃1} × (2π)−(T−p0)/2 exp{− 1

2
(e0 − E0φ0)

′(e0 − E0φ0)}
(30)

where f̃1 and f̃2 represent the first p0 and the last T −p0 elements of ft = {f1, . . . , fT }. are defined

The posterior for φ0 can therefore be derived as in the previous section:

φ0| · · · ∝ Ψ0(φ0)×Np0(Φ
−1
0 (Φ̄0φ̄0 + E′

0e0), Φ
−1
0 )ISφ0

where Φ0 = Φ̄0 + E′
0E0, e0 = (fp0+1/σ0,p0+1, , .., fT /σ0,T )′ is a T − p0 × 1 vector and E0 is a

T − p0 × p0 matrix whose tth row is given by the 1 × p0 vector (f0,t−1/σ0,t, .., f0,t−p0/σ0,t), and

Ψ0(φ0) equals the first part of expression 30.

A.3 Mean and variance of f̃p conditional on the first p observations

Define ỹp..1 = (ỹ′p, . . . , ỹ′1)
′, and ε̃p..1 = (ε̃′p, . . . , ε̃′1)

′, and:

B̄t =

26664
b1,t

... 0n,q−1
bn,t

37775 .
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Note that

ỹt = ã + B̄tΦ
t
0f̃0 + B̄t

t−1X
j=0

Φj
0ũ0,t−j + ε̃t.

Hence we can write the first p observations as:

ỹp..1 =

26666664
In

..

In

In

37777775
| {z }
Iy

ã +

26666664
B̄pΦp

0

..

B̄2Φ
2
0

B̄1Φ0

37777775
| {z }

By

f̃0 +

26666664
B̄p .. B̄pΦp−2

0 B̄pΦp−1
0

..

0 .. B̄2 B̄2Φ0

0 .. 0 B̄1

37777775
| {z }

Uy

26666664
ũ0,p

..

ũ0,2

ũ0,1

37777775 + ε̃p..1. (31)

Moreover

f̃p = Φp
0 f̃0 +

h
I .. Φp−2

0 Φp−1
0

i
| {z }

Uf

26666664
ũ0,p

..

ũ0,2

ũ0,1

37777775 . (32)

Call Σ0 and Σεp..1 the variance covariance matrix of ũp..1 = (ũ′
0,p, . . . , ũ′

0,1)
′ and ε̃p..1 = (ε̃′p , . . . , ε̃′1)

′,

respectively. From our distributional assumptions we have that24 ỹp..1

f̃p

35 = N

0@ Iyã + By f̃0,0

Φp
0 f̃0,0

,
By s̃0,0B′

y + Uy Σ0 U ′
y + Σεp..1 ...

Φp
0 s̃0,0B′

y + Uf Σ0 U ′
y Φp

0 s̃0,0Φ
p ′
0 + Uf Σ0 U ′

f

1A
(33)

where f̃0,0 and s̃0,0 are the unconditional mean and variance of f̃t. Therefore the conditional mean

and the variance of f̃p are given by:

Epi [f̃p] = Φp
0 f̃0,0 +

`
Φp

0 s̃0,0B′
y + Uf Σ0 U ′

y

´`
By s̃0,0B′

y + Uy Σ0 U ′
y + Σεp..1

´−1
“
ỹp..1 − Ipã− By f̃0,0

”
Vpi [f̃p] = Φp

0 s̃0,0Φ
p ′
0 + Uf Σ0 U ′

f −
`
Φp

0 s̃0,0B′
y + Uf Σ0 U ′

y

´`
By s̃0,0B′

y + Uy Σ0 U ′
y + Σεp..1

´−1 `
Φp

0 s̃0,0B′
y + Uf Σ0 U ′

y

´′
.

(34)

To complete the above formula we need an expression for the matrix Σεp..1 , the unconditional

variance of ε̃p..1 = (ε̃′p, . . . , ε̃′1)
′. Recall from section A.1 that the unconditional variance of ε̃i,p =

(εi,p, .., εi,1)
′ is given by σ2

i Si. The vector ε̃p..1 contains εi,p in row i, εi,p−1 in row n + i, and so on.

Since the idiosyncratic shocks are uncorrelated across equations the matrix Σεp..1 will then have

the following structure:

Σεp..1 =

266666666666664

σ1
11 0 . . .

0 σ2
11

...
. . .

σ1
12 0 . . .

0 σ2
12

...
. . .

σ1
21 0 . . .

0 σ2
21

...
. . .

. . .

377777777777775
,
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where σi
kl the (k, l)th element of Si. Finally, Σ0 is as follows:

Σ0 =

266666666666664

σ0,p 0

0 0

0 . . . . . .

0

...

σ0,p−1 0

0 0

...

. . .

377777777777775
,

A.4 Mean and variance of b̃i,pi
conditional on the first pi observa-

tions

Key ingredients in the procedure are the mean and variance for the initial state b̃i,pi = (bi,pi , . . . , bi,1, bi,0)
′

given the first pi observations ypi..1
i = (yi,pi , . . . , yi,1)

′, and the factors. Note that

yi,t = ai + bi,0ft + (

tX
j=1

ηi,j) ft + εi,t.

We can write the first pi observations as:

ypi..1
i =

26666664
1

..

1

1

37777775
| {z }
Iy

ai +

26666664
fpi

..

f2

f1

37777775
| {z }
By

bi,0 +

26666664
fpi .. fpi fpi

..

0 .. f2 f2

0 .. 0 f1

37777775
| {z }

Uy

26666664
ηi,pi

..

ηi,2

ηi,1

37777775 +

26666664
εi,pi

..

εi,2

εi,1

37777775 (35)

and b̃i,pi :

b̃i,pi =

26666666664

1

..

..

..

1

37777777775
| {z }
Bb

bi,0 +

26666666664

1 1 .. 1

..

0 .. 1 1

0 .. 0 1

0 .. 0 0

37777777775
| {z }

Ub

26666664
ηi,pi

..

ηi,2

ηi,1

37777775 (36)

Call Uy and Ub the two upper triangular matrices in equations 35 and 36, respectively. From our

distributional assumptions we have that24 ypi..1
i

b̃i,pi

35 = N

0@ Iyai + By b̄i,0

Bbb̄i,0

,
By s̄i,0B′

y + σ2
ηi

Uy U ′
y + σ2

i Si ...

Bbs̄i,0B′
y + σ2

ηi
Ub U ′

y Bbs̄i,0B′
b + σ2

ηi
Ub U ′

b

1A (37)
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where b̄i,0 and s̄i,0 are the unconditional mean and variance of bi,0. Therefore the conditional mean

and the variance of b̃i,pi are given by:

Epi [b̃i,pi ] = Bbb̄i,0

+ (Bbs̄i,0B′
y + σ2

ηi
Ub U ′

y) (By s̄i,0B′
y + σ2

ηi
Uy U ′

y + σ2
i Si)

−1 (ypi..1
i − Iyai − By b̄i,0)

Vpi [b̃i,pi ] = Bbs̄i,0B′
b + σ2

ηi
Ub U ′

b

− (Bbs̄i,0B′
y + σ2

ηi
Ub U ′

y) (By s̄i,0B′
y + σ2

ηi
Uy U ′

y + σ2
i Si)

−1 (Bbs̄i,0B′
y + σ2

ηi
Ub U ′

y)′.

(38)

A.5 Drawing {εi,0, . . . , εi,1−pi
}

In order to draw {εi,0, . . . , εi,1−pi} we use the law of motion

ε̃i,t = Φiε̃i,t−1 + σi,t [1 0 ... 0]′ ui,t, (39)

of the vector ε̃i,t = [εi,t . . . εi,t−pi+1]
′ (in this step we are using the previous iteration’s draw of

σi,t). Again, ε̃i,j is known for j = pi. Conditional on ε̃i,j we can draw ε̃i,j−1 using 39 for j = pi, .., 1.

In order to do this we need the unconditional variance of ε̃i,j and the covariance between ε̃i,j and

ε̃i,j−1 (the unconditional means are all zero). These can be recovered using the recursion:

V ar(ε̃i,j) = ΦiV ar(ε̃i,j−1)Φ
′
i + σ2

i,j [1 0 ... 0]′ [1 0 ... 0]

Cov(ε̃i,j−1, ε̃i,j) = V ar(ε̃i,j−1)Φ
′
i

(40)

starting from V ar(ε̃i,0) = σ2
i,0Σi (see expression 22).

A.6 Drawing the stochastic volatilities

Once we have the zi,ts, we can draw the stochastic volatilities using the procedure in Kim, Shephard,

and Chib (1998), which we briefly describe. Taking squares and then logs of 19 one obtains:

z∗i,t = log(σ2
i ) + 2hi,t + u∗

i,t (41)

where z∗i,t = log(z2
i,t + c), c = .001 being the offset constant, and u∗

i,t = log(u2
i,t). If u∗

i,t were

normally distributed, the hi,t could be drawn as in Carter and Kohn, using 41 as the measurement

equation and 8 as the transition equation. In fact, u∗
i,t is distributed as a log(χ2

1). Kim, Shephard,

and Chib (1998) address this problem by approximating the log(χ2
1) with a mixture of normals,

that is, expressing the distribution of u∗
i,t as:

pdf(u∗
i,t) =

KX
k=1

qkN (m∗
k − 1.2704, ν∗ 2

k ) (42)

The parameters that optimize this approximation, namely {qk, m∗
k, ν∗k}K

k=1 and K, are given in Kim,

Shephard, and Chib (1998). Note that these parameters are independent of the specific application.

The mixture of normals can be equivalently expressed as:

u∗
i,t|si,t = k ∼ N (m∗

k − 1.2704, ν∗ 2
k ), P r(si,t = k) = qk. (43)
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Conditional on si,t = k, the hi,t can be now drawn as in Carter and Kohn (1994), using 41 as the

measurement equation and 8 as the transition equation. Therefore, once we have a set of draws for

{si,t}T
t=1, drawing the stochastic volatilities is straightforward.

The next task is to draw the set {si,t}T
t=1, conditional on the draws for the stochastic volatilities

and the other parameters. Conditional on the hi,t and all other parameters, we can use 42 to draw

the si,t, i.e.:

Pr{si,t = k| . . . } ∝ qkν−1
k exp{− 1

2ν∗ 2
k

(u∗
i,t −m∗

k + 1.2704)2} (44)

where from 41 u∗
i,t = z∗i,t − 2hi,t.

A.7 Drawing the stochastic volatilities for the factor: {σ0,t}T
t=1.

Define

z0,t = ft − φ0,1ft−1 ..− φ0,pift−q. (45)

Using this definition, and the fact that decomposition σ0,t = ehi,t , expression 6 can be rewritten

as:

z0,t = eh0,tu0,t. (46)

Since ft is given at this stage the z0,t are known quantities for t ≥ q. For t = 1, .., q we need

to obtain draws of the idiosyncratic shocks and condition on them. This is done by using further

iterations (backward) in the Carter and Kohn procedure. To do this we need the mean and the

variance of ft given the first t observations. For t = q − 1 = p these quantities are obtained in

section A.3. A similar approach delivers the same objects for t = p − 1, .., 1. Given the z0,ts, the

remainder of the procedure is as in Kim, Shephard, and Chib (1998).
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Table 1: Variance Attributable to World, European, and Idiosyncratic Shocks

Dates 70-Q2 80-Q1 85-Q1 90-Q1 95-Q1 05-Q4

U.S. World 12.0 (0.0,26.1) 12.1 (2.4,22.9) 5.8 (1.6,10.9) 2.6 (0.5,5.2) 1.8 (0.1,3.9) 1.9 (0.0,4.9)
Country 8.7 (3.6,14.2) 7.7 (3.8,12.2) 5.1 (2.9,7.5) 3.7 (2.3,5.3) 3.2 (2.1,4.5) 2.8 (1.5,4.3)
Total 21.3 (9.3,35.6) 20.1 (12.4,30.2) 11.0 (6.4,16.3) 6.5 (3.7,9.7) 5.1 (2.9,7.7) 4.8 (2.1,8.3)

Japan World 7.4 (0.0,20.3) 1.5 (0.0,4.6) 0.5 (0.0,2.1) 0.2 (0.0,0.9) 0.2 (0.0,1.2) 0.4 (0.0,2.7)
Country 13.8 (7.5,21.2) 10.8 (6.8,15.2) 11.3 (7.4,15.5) 12.9 (9.1,17.3) 11.3 (7.8,15.5) 11.0 (6.4,16.3)
Total 22.3 (12.6,34.9) 12.8 (8.0,18.0) 12.1 (8.0,16.6) 13.3 (9.3,17.8) 11.8 (8.0,16.0) 11.9 (7.1,17.8)

Canada World 11.3 (1.4,24.8) 8.5 (2.7,15.9) 7.2 (2.7,13.0) 5.3 (2.1,9.4) 3.7 (1.1,6.9) 2.6 (0.0,6.1)
Country 9.8 (5.4,15.0) 7.3 (4.5,10.3) 5.8 (3.7,8.2) 4.0 (2.5,5.6) 3.0 (1.8,4.2) 2.3 (1.2,3.6)
Total 21.8 (11.6,35.4) 16.0 (9.8,23.4) 13.2 (8.2,18.8) 9.3 (5.8,13.5) 6.7 (4.0,10.3) 5.1 (2.0,9.0)

Australia World 2.6 (0.0,8.4) 3.2 (0.0,7.1) 3.8 (0.7,7.9) 2.7 (0.6,5.5) 1.6 (0.0,3.6) 0.6 (0.0,2.7)
Country 19.6 (11.7,28.4)18.5 (12.9,24.4) 12.7 (8.6,17.2) 8.5 (5.6,11.7) 6.8 (4.4,9.4) 5.6 (3.1,8.4)
Total 23.1 (13.8,34.2)22.1 (15.7,29.7) 16.8 (11.6,22.5) 11.5 (7.9,15.8) 8.6 (5.5,11.9) 6.6 (3.5,10.2)

New Zealand World 4.0 (0.0,14.9) 3.0 (0.0,9.1) 2.5 (0.0,6.9) 2.1 (0.0,5.5) 1.6 (0.0,4.6) 1.2 (0.0,4.7)
Country 204 (124,292) 151 (105,206) 108 (77,143) 58.8 (39.0,81.0)35.3 (22.8,50.9)21.7 (10.7,34.4)
Total 210 (129,298) 155 (110,211) 111 (80,147) 61.4 (42.4,84.8)37.5 (24.2,52.8)23.6 (12.1,37.4)

U.K. World 6.3 (0.0,16.8) 3.5 (0.0,8.1) 2.5 (0.1,5.4) 2.7 (0.7,5.2) 1.7 (0.2,3.5) 0.8 (0.0,2.6)
Europe 0.7 (0.0,5.1) 0.8 (0.0,3.9) 0.5 (0.0,2.2) 0.1 (0.0,0.6) 0.1 (0.0,0.6) 0.1 (0.0,0.9)
Country 16.5 (9.6,24.7) 14.9 (10.0,20.1) 7.9 (5.3,10.8) 4.3 (2.8,6.0) 2.5 (1.6,3.6) 1.7 (0.9,2.7)
Total 25.9 (15.7,38.5)20.5 (14.2,27.3) 11.5 (7.4,16.0) 7.4 (4.7,10.4) 4.5 (2.5,6.7) 2.9 (1.2,5.2)

Austria World 1.5 (0.0,8.2) 0.4 (0.0,2.3) 0.2 (0.0,0.9) 0.1 (0.0,0.5) 0.1 (0.0,0.6) 0.4 (0.0,1.9)
Europe 8.3 (1.3,16.8) 5.3 (1.3,10.3) 4.7 (0.9,9.2) 2.8 (0.7,5.4) 1.3 (0.0,3.0) 1.1 (0.0,3.3)
Country 17.5 (10.4,25.6) 11.4 (7.7,15.5) 6.6 (4.3,9.0) 3.4 (2.1,4.9) 2.2 (1.2,3.2) 1.6 (0.7,2.6)
Total 29.5 (19.0,41.8)17.9 (12.2,24.6) 11.8 (7.3,16.8) 6.5 (4.0,9.7) 3.8 (1.9,6.0) 3.6 (1.4,6.5)

Belgium World 0.3 (0.0,2.3) 0.1 (0.0,0.5) 0.0 (0.0,0.2) 0.0 (0.0,0.3) 0.1 (0.0,0.4) 0.5 (0.0,1.6)
Europe 2.4 (0.0,6.2) 1.1 (0.0,2.8) 0.1 (0.0,0.4) 0.1 (0.0,0.5) 0.1 (0.0,0.8) 0.4 (0.0,2.2)
Country 3.2 (1.6,5.2) 2.7 (1.4,4.2) 2.2 (1.2,3.5) 2.1 (1.2,3.4) 2.3 (1.2,3.6) 2.2 (0.9,3.9)
Total 6.7 (3.1,11.4) 4.2 (2.3,6.4) 2.4 (1.3,3.7) 2.4 (1.3,3.7) 2.7 (1.5,4.1) 3.7 (1.8,6.1)

Denmark World 3.7 (0.0,9.8) 2.8 (0.0,6.6) 1.8 (0.0,4.5) 1.5 (0.0,3.8) 1.7 (0.0,4.2) 1.5 (0.0,4.8)
Europe 0.8 (0.0,3.3) 1.8 (0.0,4.9) 1.0 (0.0,3.5) 0.6 (0.0,2.6) 0.5 (0.0,2.3) 0.5 (0.0,2.8)
Country 8.0 (4.0,12.4) 13.4 (9.1,18.3) 15.9 (11.0,21.2) 17.5 (12.5,22.8) 12.8 (8.8,17.6) 9.7 (5.5,14.6)
Total 13.6 (6.8,21.8) 18.9 (12.9,25.4) 19.5 (13.7,26.4) 20.3 (14.5,26.9) 15.7 (11.0,21.6) 12.7 (7.4,19.5)

Finland World 0.7 (0.0,4.7) 0.4 (0.0,2.4) 1.1 (0.0,4.0) 3.2 (0.0,8.1) 3.2 (0.0,8.3) 3.0 (0.0,9.2)
Europe 0.5 (0.0,2.9) 0.3 (0.0,1.6) 0.2 (0.0,1.4) 0.2 (0.0,1.4) 0.3 (0.0,1.7) 0.4 (0.0,2.8)
Country 13.0 (7.4,19.6) 15.5 (10.2,21.5) 13.5 (8.5,18.8) 13.1 (8.4,18.7) 11.5 (7.3,16.6) 10.6 (5.6,16.8)
Total 15.7 (9.1,23.9) 16.9 (10.9,23.3) 15.7 (10.1,21.8) 17.5 (11.9,23.8) 16.1 (10.7,22.4) 15.6 (8.4,23.9)

France World 2.4 (0.0,7.5) 0.6 (0.0,1.8) 0.1 (0.0,0.8) 0.6 (0.0,1.8) 0.3 (0.0,1.1) 0.5 (0.0,2.1)
Europe 3.8 (0.2,8.0) 1.3 (0.0,2.9) 1.8 (0.0,4.0) 1.7 (0.2,3.6) 2.3 (0.2,4.9) 0.9 (0.0,3.0)
Country 2.4 (1.4,3.6) 2.3 (1.5,3.2) 2.2 (1.4,3.1) 2.1 (1.4,3.0) 2.0 (1.3,2.9) 2.2 (1.2,3.3)
Total 9.5 (4.6,15.3) 4.4 (2.5,6.6) 4.4 (2.3,7.0) 4.7 (2.6,7.1) 4.9 (2.5,7.7) 4.0 (1.8,7.1)

Germany World 4.3 (0.0,13.4) 2.7 (0.0,6.3) 1.3 (0.0,3.5) 0.3 (0.0,1.4) 0.2 (0.0,1.2) 0.3 (0.0,1.5)
Europe 4.3 (0.0,11.4) 3.3 (0.3,7.1) 4.3 (0.7,8.7) 6.4 (2.3,11.6) 3.5 (0.5,7.0) 2.6 (0.0,6.3)
Country 8.1 (3.8,12.7) 8.0 (4.8,11.3) 7.9 (5.0,11.0) 7.6 (4.8,10.4) 5.8 (3.8,8.2) 3.5 (1.8,5.6)
Total 18.7 (11.4,28.0) 14.7 (9.8,20.2) 14.1 (9.3,19.9) 14.7 (9.6,20.5) 9.9 (6.1,14.3) 6.9 (3.1,11.5)

Ireland World 0.2 (0.0,1.4) 0.1 (0.0,0.7) 0.3 (0.0,1.5) 0.4 (0.0,2.1) 0.5 (0.0,2.6) 0.5 (0.0,3.4)
Europe 0.8 (0.0,3.4) 0.7 (0.0,2.4) 0.3 (0.0,1.9) 0.2 (0.0,1.3) 0.5 (0.0,2.7) 1.0 (0.0,7.1)
Country 4.3 (1.8,8.2) 6.2 (2.9,11.5) 9.2 (4.6,17.1) 15.1 (7.1,27.9) 30.5 (14.2,57.5) 94.4 (37.3,189)
Total 6.1 (2.5,11.6) 7.5 (3.6,13.2) 10.5 (5.2,18.4) 16.5 (8.0,29.1) 32.7 (15.6,59.5) 98.5 (40.5,193)

Italy World 0.7 (0.0,4.8) 0.8 (0.0,3.8) 1.0 (0.0,3.1) 0.8 (0.0,2.3) 0.4 (0.0,1.6) 0.2 (0.0,1.4)
Europe 5.2 (0.0,11.9) 3.9 (0.0,8.0) 2.2 (0.0,5.3) 1.6 (0.0,3.9) 2.5 (0.0,5.7) 2.9 (0.0,7.5)
Country 8.4 (4.9,12.1) 8.0 (5.5,10.9) 6.3 (4.2,8.6) 5.9 (4.0,8.0) 5.2 (3.4,7.0) 3.3 (1.7,5.1)
Total 15.6 (8.4,24.3) 13.6 (8.7,19.0) 10.1 (6.3,14.8) 8.8 (5.6,12.5) 8.5 (5.4,12.4) 7.0 (3.2,12.1)

Sweden World 0.8 (0.0,4.7) 1.1 (0.0,3.9) 1.9 (0.0,4.7) 2.8 (0.3,5.8) 2.9 (0.5,6.3) 2.6 (0.0,6.2)
Europe 0.7 (0.0,3.7) 0.9 (0.0,3.4) 1.2 (0.0,3.9) 1.6 (0.0,4.1) 1.7 (0.0,4.5) 0.3 (0.0,1.6)
Country 23.4 (13.6,34.5)26.0 (18.7,34.7) 16.2 (11.1,21.8) 9.7 (6.3,13.4) 5.5 (3.3,8.0) 2.8 (1.3,4.7)
Total 26.5 (15.8,38.5)29.1 (21.2,38.6) 20.1 (13.7,26.9) 14.8 (9.8,20.0) 10.8 (6.7,15.6) 6.2 (2.6,10.8)

Netherlands World 0.9 (0.0,4.4) 2.5 (0.0,6.1) 1.7 (0.0,4.1) 0.7 (0.0,2.1) 1.0 (0.0,2.5) 0.8 (0.0,3.1)
Europe 2.7 (0.0,6.6) 3.6 (0.4,7.8) 4.1 (0.5,8.5) 3.3 (0.7,6.6) 1.6 (0.0,3.8) 4.8 (0.6,10.6)
Country 14.3 (7.6,21.9) 17.5 (11.8,24.0) 12.9 (8.7,17.3) 8.2 (5.5,11.6) 5.5 (3.4,7.9) 3.3 (1.5,5.4)
Total 19.2 (10.6,28.3)24.6 (17.6,32.5) 19.4 (13.3,26.2) 12.8 (8.6,17.8) 8.5 (5.1,12.4) 9.6 (4.6,16.1)

Norway World 2.1 (0.0,8.9) 1.7 (0.0,5.2) 0.9 (0.0,2.9) 0.3 (0.0,1.4) 0.3 (0.0,1.4) 0.3 (0.0,1.9)
Europe 1.2 (0.0,5.6) 0.6 (0.0,2.9) 0.3 (0.0,1.9) 0.2 (0.0,1.5) 0.6 (0.0,2.5) 1.8 (0.0,6.0)
Country 79.4 (49.5,116)44.7 (28.1,62.3)29.6 (18.3,42.1)24.6 (15.9,35.4)22.3 (14.5,31.1) 16.0 (8.7,25.1)
Total 85.3 (54.7,122)48.3 (31.8,66.7)31.5 (19.8,44.3)25.7 (16.6,36.6)23.8 (15.7,33.1)19.4 (10.9,29.4)

Switzerland World 0.4 (0.0,3.4) 0.6 (0.0,2.8) 0.7 (0.0,3.0) 0.7 (0.0,2.5) 0.5 (0.0,2.2) 0.8 (0.0,3.4)
Europe 1.6 (0.0,5.7) 2.8 (0.0,6.6) 2.2 (0.0,5.8) 2.4 (0.0,6.0) 2.2 (0.0,5.8) 2.8 (0.0,8.1)
Country 5.4 (3.0,8.3) 7.5 (4.9,10.9) 7.6 (4.6,11.2) 7.3 (4.3,10.9) 6.0 (3.4,9.1) 4.2 (1.9,7.0)
Total 8.7 (4.1,14.5) 11.8 (7.4,17.4) 11.4 (6.7,17.0) 11.1 (6.4,16.5) 9.5 (5.4,14.7) 8.9 (4.1,15.5)

Spain World 0.7 (0.0,5.2) 0.1 (0.0,0.9) 0.2 (0.0,1.2) 0.2 (0.0,1.4) 0.2 (0.0,1.3) 0.2 (0.0,1.3)
Europe 0.8 (0.0,3.8) 0.8 (0.0,2.7) 1.3 (0.0,3.9) 1.7 (0.0,5.0) 1.3 (0.0,4.1) 0.3 (0.0,2.0)
Country 4.3 (2.1,6.6) 5.6 (3.3,8.0) 8.5 (5.1,12.2) 12.3 (7.5,18.1) 9.0 (5.1,13.6) 5.5 (2.5,9.5)
Total 7.0 (3.2,12.5) 7.1 (4.1,10.3) 10.6 (6.5,15.5) 15.0 (9.5,21.6) 11.2 (6.7,16.8) 6.7 (3.0,11.6)

Notes: See next page
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Notes to Table 1: The Table shows the variance attributable to international business cycles (World), Euro-

pean business cycles (Europe), country-specific fluctuations (Country), and the overall variance (Total), computed

as the sum of the variances attributed to each component. For each date, each country, and each MCMC draw the

variance attributable to international (European) business cycles is computed by multiplying βw 2
i,t (βe 2

i,t ) times

the variance of the factor, computed from equation (6) using the time t estimate of the factor’s stochastic volatil-

ity (h0,t). Likewise, the variance attributable to country-specific cycles is computed from equation (7) using the

time t estimate of the idiosyncratic component’s stochastic volatility (hi,t). The Table shows the median across

all posterior draws. Bold-faced numbers indicate that the variance has significantly declined (at the 10% level)

relative to the beginning of the sample. Underlined numbers indicate that the variance has significantly declined

(at the 10% level) relative to the previous date.
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Table 2: Relative Importance of World, European, and Idiosyncratic Shocks

Dates 70-Q2 80-Q1 85-Q1 90-Q1 95-Q1 05-Q4

U.S. World 58 (22,88) 61 (34,88) 54 (30,76) 42 (19,64) 36 (12,61) 40 ( 0,66)
Country 42 (12,78) 39 (12,66) 46 (24,70) 58 (36,81) 64 (39,88) 60 (34,100)

Japan World 35 ( 0,65) 12 ( 0,32) 4 ( 0,16) 1 ( 0, 7) 2 ( 0,10) 3 ( 0,20)
Country 65 (35,100) 88 (68,100) 96 (84,100) 99 (93,100) 98 (90,100) 97 (80,100)

Canada World 53 (21,80) 54 (32,76) 56 (33,75) 57 (37,77) 55 (33,77) 53 (18,81)
Country 47 (20,79) 46 (24,68) 44 (25,67) 43 (23,63) 45 (23,67) 47 (19,82)

Australia World 12 ( 0,31) 14 ( 0,29) 23 ( 6,42) 24 ( 7,42) 19 ( 2,38) 10 ( 0,33)
Country 88 (69,100) 86 (71,100) 77 (58,94) 76 (58,93) 81 (62,98) 90 (67,100)

New Zealand World 2 ( 0, 7) 2 ( 0, 6) 2 ( 0, 6) 3 ( 0, 9) 4 ( 0,12) 5 ( 0,18)
Country 98 (93,100) 98 (94,100) 98 (94,100) 97 (91,100) 96 (88,100) 95 (82,100)

U.K. World 26 ( 0,53) 17 ( 0,35) 22 ( 4,42) 37 (16,59) 38 (14,63) 28 ( 0,59)
Europe 3 ( 0,20) 4 ( 0,19) 4 ( 0,18) 1 ( 0, 8) 2 ( 0,12) 5 ( 0,27)
Country 66 (39,92) 75 (54,93) 70 (49,91) 60 (38,80) 58 (34,82) 60 (30,96)

Austria World 5 ( 0,26) 2 ( 0,12) 1 ( 0, 8) 1 ( 0, 7) 3 ( 0,16) 12 ( 0,45)
Europe 29 ( 7,51) 30 (11,50) 40 (17,62) 43 (21,65) 34 ( 5,62) 33 ( 0,64)
Country 61 (40,83) 65 (46,83) 57 (35,81) 54 (33,77) 59 (32,86) 46 (17,80)

Belgium World 4 ( 0,32) 1 ( 0,12) 1 ( 0, 9) 2 ( 0,11) 2 ( 0,15) 14 ( 0,41)
Europe 38 ( 0,66) 28 ( 0,53) 2 ( 0,14) 3 ( 0,18) 5 ( 0,27) 13 ( 0,48)
Country 50 (19,82) 67 (39,93) 94 (79,100) 93 (75,100) 89 (66,100) 64 (33,95)

Denmark World 28 ( 0,55) 15 ( 0,31) 9 ( 0,21) 7 ( 0,17) 11 ( 0,25) 12 ( 0,33)
Europe 6 ( 0,23) 10 ( 0,24) 5 ( 0,17) 3 ( 0,12) 3 ( 0,14) 4 ( 0,20)
Country 61 (34,88) 72 (53,90) 84 (68,98) 88 (75,99) 83 (67,98) 80 (58,100)

Finland World 5 ( 0,26) 2 ( 0,13) 7 ( 0,23) 19 ( 0,41) 21 ( 0,44) 20 ( 0,48)
Europe 3 ( 0,18) 1 ( 0, 9) 1 ( 0, 8) 1 ( 0, 8) 2 ( 0,10) 3 ( 0,16)
Country 87 (65,100) 94 (82,100) 89 (73,100) 78 (56,99) 75 (51,98) 72 (46,100)

France World 27 ( 0,61) 13 ( 0,36) 3 ( 0,16) 14 ( 0,32) 5 ( 0,21) 12 ( 0,41)
Europe 43 ( 9,73) 29 ( 4,55) 42 (13,70) 37 (13,62) 48 (18,75) 23 ( 0,53)
Country 26 (10,46) 53 (29,77) 51 (24,79) 46 (23,70) 42 (20,69) 56 (26,90)

Germany World 23 ( 0,58) 19 ( 0,38) 9 ( 0,23) 2 ( 0, 9) 2 ( 0,11) 4 ( 0,21)
Europe 24 ( 0,57) 23 ( 5,45) 31 (11,54) 44 (24,64) 36 (13,59) 40 ( 9,69)
Country 45 (17,71) 55 (34,76) 57 (35,80) 52 (32,73) 60 (37,82) 52 (24,81)

Ireland World 3 ( 0,21) 1 ( 0, 8) 2 ( 0,14) 3 ( 0,12) 1 ( 0, 8) 0 ( 0, 4)
Europe 13 ( 0,43) 9 ( 0,28) 3 ( 0,16) 1 ( 0, 8) 1 ( 0, 8) 1 ( 0, 7)
Country 77 (49,100) 87 (68,100) 92 (75,100) 95 (82,100) 96 (86,100) 98 (90,100)

Italy World 4 ( 0,28) 6 ( 0,26) 10 ( 0,27) 9 ( 0,24) 5 ( 0,17) 3 ( 0,19)
Europe 35 ( 0,58) 30 ( 0,49) 23 ( 0,43) 19 ( 0,37) 30 ( 6,56) 44 (11,76)
Country 55 (30,81) 60 (39,82) 64 (41,87) 69 (47,91) 62 (38,87) 49 (20,81)

Sweden World 3 ( 0,16) 4 ( 0,13) 10 ( 0,22) 20 ( 5,37) 28 ( 7,50) 43 (11,75)
Europe 3 ( 0,14) 3 ( 0,11) 6 ( 0,18) 11 ( 0,25) 16 ( 0,36) 4 ( 0,23)
Country 91 (76,100) 91 (81,100) 82 (66,97) 67 (47,86) 52 (30,74) 47 (19,78)

Netherlands World 5 ( 0,21) 10 ( 0,23) 9 ( 0,20) 5 ( 0,15) 12 ( 0,27) 8 ( 0,30)
Europe 14 ( 0,32) 15 ( 2,30) 21 ( 5,40) 27 ( 9,45) 19 ( 0,38) 52 (21,80)
Country 77 (57,95) 73 (55,88) 68 (49,86) 66 (46,85) 67 (45,88) 35 (13,60)

Norway World 3 ( 0,10) 3 ( 0,11) 3 ( 0, 9) 1 ( 0, 5) 1 ( 0, 6) 2 ( 0, 9)
Europe 1 ( 0, 7) 1 ( 0, 6) 1 ( 0, 6) 1 ( 0, 6) 3 ( 0,10) 10 ( 0,28)
Country 95 (86,100) 94 (86,100) 95 (87,100) 97 (91,100) 95 (86,100) 86 (67,100)

Switzerland World 5 ( 0,34) 5 ( 0,23) 7 ( 0,25) 6 ( 0,21) 6 ( 0,21) 10 ( 0,35)
Europe 20 ( 0,50) 25 ( 0,46) 20 ( 0,41) 22 ( 0,44) 24 ( 0,48) 34 ( 0,64)
Country 65 (37,97) 66 (43,89) 69 (45,93) 68 (44,92) 66 (40,91) 49 (21,84)

Spain World 10 ( 0,55) 2 ( 0,13) 2 ( 0,11) 2 ( 0, 9) 2 ( 0,11) 3 ( 0,18)
Europe 12 ( 0,43) 12 ( 0,32) 12 ( 0,31) 12 ( 0,30) 12 ( 0,32) 5 ( 0,25)
Country 66 (33,100) 82 (63,100) 83 (64,100) 85 (66,100) 84 (63,100) 88 (65,100)

Notes: The Table shows the variance attributable to world, European, and country-specific cycles as a fraction

of the total variance for each country in the sample for the six dates shown above. All figures are in percent,

and numbers in parenthesis represent the 90% posterior bands. Bold-faced figures indicate that the change in

the fraction of the variance explained by each component relative to the beginning of the sample is significant at

the 10% level. Underlined figures indicate that the change relative to the previous date is significant at the 10%

level.
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Figure 1: Variance of Real GDP Growth for G7 Countries (Ten-Years Rolling

Window)
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Notes: The Figure shows for each period t the variance of real GDP growth in the previous ten year period.
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Figure 2: Volatility: Common Factors vs Country-Specific Fluctuations (G7

Countries)
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Notes: The Figure shows the variance attributable to international business cycles (black), European business

cycles (gray), and country-specific fluctuations (white). For each point in time, each country, and each MCMC

draw the variance attributable to international (European) business cycles is computed by multiplying βw 2
i,t (βe 2

i,t )

times the variance of the factor, computed from equation (6) using the time t estimate of the factor’s stochastic

volatility (h0,t). Likewise, the variance attributable to country-specific cycles is computed from equation (7) using

the time t estimate of the idiosyncratic component’s stochastic volatility (hi,t). The Figure shows the median

across all posterior draws.
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Figure 3: Average Cross-country Correlations
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Notes: The figure shows the average cross-country correlation for G7 countries, all countries in the sample, Eu-

ropean countries, and countries that have joined the Euro. At each point in time, and for each MCMC draw,

we compute all pair-wise correlations implied by the factor model using the time t estimates of the loadings and

stochastic volatilities. We then take the (unweighted) average across countries in the group. The Figure plots the

median and the 90% bands of this average.
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Figure 4: Cross-sectional Dispersion in Volatility

G7 Countries
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Notes: The Figure shows the evolution over time of the cross-sectional standard deviation in output growth

volatility for three groups of countries: G7, all the countries in our sample, and all the countries but Norway, New

Zealand, and Ireland. For each group of countries we show the median across MCMC draws of cross-sectional

standard deviation of the total volatility, as well as the volatility attributed to international business cycles and

country-specific fluctuations. The shaded area represents the 90% bands. The median is shown as a solid line

whenever the decline in the cross-sectional standard deviation relative to the beginning of the sample is significant

at the 10% level, and as a dashed line otherwise.
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Figure 5: The US and Japan: Sensitivity to the World Factor and Country-

Specific Volatilities
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Notes: The Figure plots the time-varying loadings to the world factor bw
i,t (top) and standard deviations of the

country-specific component relative to the first period σi,t/σi,1 (bottom) for the US and Japan. The solid lines

show the median and the shaded areas and dotted lines represent the 68 and 90% bands, respectively.
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Figure 6: Output Growth Decomposition: International Business Cycles vs

Country-Specific Fluctuations
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Notes: The Figure plots for each country the demeaned data (Data), the posterior medians of the terms bw
i,tf

w
t +

be
i,tf

e
t (International Business Cycles) and εi,t (Country-Specific Fluctuations) in equation (9).




