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1 Introduction

Risk-neutral probability distributions (RNDs) of future asset returns based on the

option-implied volatility smile have been available to researchers in finance for decades.

These techniques, however, are difficult to implement, because rendering some option

data suitable for this purpose requires a great deal of processing, and because the

algorithms that compute the RNDs are complex and hard to automate. This is perhaps

a major reason that option-based RNDs have been less widely applied and become less

standard than might have been expected given their potential value.

This paper describes a simple technique for computing RNDs given suitable input

data, requiring relatively straightforward programming. While most elements of the

technique have been employed in earlier work, their combination and sequencing as

described here greatly reduce the effort required to obtain results. The aim of the

technique is to reduce complexity and the aim of the paper is to provide cookbook-

style guidance through the estimation process. We give examples for different types

of assets: equities, foreign exchange, and long-term interest rates.1

Methods for computing RNDs from option prices are inspired by the Breeden and

Litzenberger (1978) statement of the relationship between market prices of European

call options and the RND: In the absence of arbitrage, the mathematical derivative

of the call option value with respect to the exercise price is closely related to the

risk-neutral probability that the future asset price will be no higher than the exercise

price at option maturity.2

The payoff at maturity to a European call option maturing at time T , with an exercise

price X, is max(ST − X, 0), with ST representing the terminal underlying price. We
denote the observed time-t market value of a European call struck at X and with a

tenor of τ = T −t by c(t, X, τ). Absent arbitrage, therefore, the option value is equal
to the present expected value of the terminal payoff under the risk-neutral distribution:

c(t, X, τ) = e−rt τ Ẽt [max(ST −X, 0)] = e−rt τ
∫ ∞

X

(s − X)π̃t(s)ds,

where

St ≡ time-t underlying price
rt ≡ time-t continuously compounded financing rate

Ẽt [·] ≡ an expectation taken under the time-t risk-neutral probability measure
π̃t(·) ≡ time-t risk-neutral probability density of ST
1The technique set out here is applied to the measurement of systemic risk in Malz (2013). It is

also used in the Federal Reserve Bank of New York’s market monitoring.
2Surveys of techniques for extracting RNDs from option prices include Jackwerth (1999) and (2004),

and Mandler (2003). More recent approaches are cited later in this paper. The Breeden-Litzenberger

theorem was first stated in Breeden and Litzenberger (1978) and Banz and Miller (1978).

1



Differentiate the market call price with respect to the exercise price X to get the

“exercise-price delta”

∂

∂X
c(t, X, τ) = e−rt τ

[∫ X

0

π̃t(s)ds − 1
]
. (1)

This result implies that the time-t risk-neutral cumulative distribution function Π̃t(X)

of the future asset price—the probability that the terminal underlying price will be X or

lower—is equal to one plus the future value of the exercise-price delta of a European

call struck at X:

Π̃t(X) ≡
∫ X

0

π̃t(s)ds = 1 + e
rt τ
∂

∂X
c(t, τ, X). (2)

Differentiate again to see that the time-t risk-neutral probability density function is

the future value of the second derivative of the call price with respect to the exercise

price:

π̃t(X) = e
rt τ
∂2

∂X2
c(t, X, τ). (3)

Though we’ll describe our technique in terms of the market’s pricing schedule for call

options, the put price schedule offers a more direct and intuitive way to state the

relationship between option prices and risk-neutral probabilities:

Π̃t(X) = e
rt τ
∂

∂X
p(t, τ, X),

where p(t, X, τ) represents the time-t value of a European put struck at X and with

a tenor of τ .

Figlewski (2010) provides some nice intuition for this statement. Consider the in-

creasing value of a put option, for a given current market price of the underlying, as

the exercise price varies from low to high. At very low exercise prices this function

has a slope and value near zero, and at very high exercise prices a slope equal to erτ

and a value near its intrinsic value. As we increase the exercise price from X to a

nearby point X +Δ, the risk-neutral expected future value of the payoff of the option

increases by Δ times the risk-neutral probability that the option expires in-the-money,

that is, Π̃(X +Δ):

Δ× Π̃(X + Δ) ≈ ert τ [p(t, τ, X + Δ)− p(t, τ, X)].
⇒ Π̃(X + Δ) ≈ 1

Δ
ert τ [p(t, τ, X + Δ)− p(t, τ, X)]
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It’s well known, but worth reiterating, that RNDs are not the same as real-world

probabilities, or the ones in market participants’ heads, but are influenced, perhaps

heavily, by risk preferences. A change in risk-neutral probabilities can be due to changes

in real-world probabilities, or risk preferences, or both.3

2 Overview of the technique

The technique we present here works, in principle, for any asset type, provided data of

acceptable quality are available. We’ll sketch the approach here and give detail on how

it’s applied to different asset classes, as well as examples of the results, in subsequent

sections.

2.1 Implied volatility data

The approach requires data of reasonably good quality on the Black-Scholes implied

volatility smile. The data, that is, are Black-Scholes volatilities for European options

of a given tenor τ , but with a range of exercise prices. The volatility smile changes

over time and for varying tenors, and can be thought of as a slice through the maturity

axis of a time-t Black-Scholes volatility surface σ(t, X, τ). We focus here on a single

tenor, rather than the entire surface.

Although Black-Scholes volatilities are expressed in a metric drawn from a particular

option pricing model, they are associated with market- rather than model-based prices.

Denote the time-t Black-Scholes model value of a European call as

v(St, X, τ, σ, rt, qt) = Ste
−qtτΦ

⎡
⎣ log

(
St
X

)
+
(
rt − qt + σ2

2

)
τ

σ
√
τ

⎤
⎦

−Xe−rt τΦ
⎡
⎣ log

(
St
X

)
+

(
rt − qt − σ2

2

)
τ

σ
√
τ

⎤
⎦

where

3The work surveyed in Garcia, Ghysels and Renault (2010) uses historical data on underlying asset

prices as well as contemporaneous option price data to simultaneously estimate both the risk-neutral and

real-world probability distributions. Ross (2013) presents a technique that, with suitable assumptions,

identifies both the risk-neutral and real-world probabilities of discrete price outcomes from option prices

alone.
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σ ≡ a Black-Scholes implied volatility
qt ≡ time-t continuously compounded cash flow yielded by the underlying asset
The volatility surface translates into the time-t market price schedule of European

calls with different tenors and exercise prices via the relationship

c(t, X, τ) = v [St , X, τ, σ(t, X, τ), rt, qt ]. (4)

We refer to the right-hand side of (4) as the call valuation function. This function

is a standard Black-Scholes formula taking as its implied volatility argument the in-

terpolated volatility corresponding to the given exercise price. It takes an observed or

estimated market-adjusted Black-Scholes volatility, and returns an estimated market

call price. We can view c(t, X, τ) and σ(t, X, τ) as simply two different metrics for

expressing the market values of options.

The implied volatilities can be expressed in various other units, such as Black or

normalized volatilities. The exercise prices can also be expressed in different ways,

such as the ratio or spread to the current spot or forward price, or the option delta.

But under all these conventions, implied volatilities can be transformed into option

prices in currency units for given exercise prices.

One of the main challenges in fitting RNDs is the diversity of option data and the

difficulty of working with it. That’s not the problem we’re solving here. Rather, we’re

attempting to find an easier way to process the option data into an estimated RND

and minimizing the extent to which we add assumptions to the information contained

in the data. The data we use for this paper are obtained from Bloomberg Financial

LP, which aggregates and processes quotes, end-of-day prices, and indicative prices

from a range of dealers and exchanges. As we’ll describe in a moment, we subject the

data to a set of quality diagnostics. While flaws do occasionally appear in the data,

the overall quality is good.

The approach here can be applied to a wide range of data types. We’ve developed

the technique for three input data structures. In each, the data on each date consist

of two columns/rows, one containing implied volatilities and the other the associated

exercise prices:

Asset class Volatility type Units Exercise price metric

Exchange-traded Black-Scholes volatilities Pct. p.a. Ratio to spot

Currencies and gold Black-Scholes volatilities Pct. p.a. Spot delta

Swaptions Black volatilities Pct. p.a. Bps from forward

We’ll provide more detail on the data in a subsequent section on each structure.4

4Intraday data can be displayed for a given asset using the function OVDV. The documentation for
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2.2 The technique in brief

The steps in the computation of the RND are:

• Interpolate and extrapolate the volatility smile data using a cubic spline function
that is “clamped” at the endpoints. This is tantamount to assuming that implied

volatilities for very deep out-of-the-money calls and puts are identical to those

for the furthest in- and out-of-the-money strikes in the input data.

• Apply the call valuation function (4), taking the interpolated Black-Scholes
volatilities and other inputs called for by the Black-Scholes formula as argu-

ments, and returning an option value in currency units.

• Numerically difference the call valuation function with respect to the exercise
price to approximate the risk-neutral cumulative probability and probability den-

sity functions. The step size for this differentiation is set so that the density

function is non-negative.

The probability distribution and density functions are estimated by taking finite dif-

ferences in exercise-price space of the call valuation function. Discretized versions of

the option-based estimate of the risk-neutral cumulative probability distribution and

density functions (2)–(3) for a step size Δ are given by

Π̃t(X) ≈ 1 + ert τ 1
Δ

[
c

(
t, X +

Δ

2
, τ

)
− c

(
t, X − Δ

2
, τ

)]

and

π̃t(X) ≈ 1
Δ

[
Π̃t

(
X +

Δ

2

)
− Π̃t

(
X − Δ

2

)]

= ert τ
1

Δ2
[c(t, X + Δ, τ) + c(t, X − Δ, τ)− 2c(t, X, τ)].

As Δ → 0, these expressions converge to the risk-neutral distribution functions, but
the propensity for negative probabilities increases.

While fairly standard, two key features in combination simplify the computation pro-

cess without generating anomalies: the use of a clamped cubic spline to interpolate—

and, more importantly, extrapolate—the volatility smile, and treating the differencing

step size as a user setting. Both are intended primarily to avoid processing-induced

violations of no-arbitrage restrictions. We’ll discuss these problems in detail just be-

low. But in a nutshell, if the input implied volatility data don’t violate no-arbitrage

restrictions, why should the interpolating function?

Bloomberg’s implied volatility data is a bit sparse. Some notes and white papers can be downloaded

via the function DRVD (Derivatives Documentation Center).
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2.3 The volatility interpolating function

A cubic spline is constructed to have continuous first and second derivatives at all

its knot points. The construction of a cubic spline involves solving a set of linear

equations for the coefficients that impose continuity of the first and second deriva-

tives. To complete the algorithm, additional conditions are imposed on the equations

corresponding to the first and last, or boundary, knot points. A natural cubic spline is

constructed so that the second derivatives at the boundary knot points are equal to

zero. As a result, extrapolation beyond the boundary knot points is linear, but gener-

ally with a non-zero slope. This is precisely the behavior that may induce violations of

the no-arbitrage bounds on the volatility smile.

A clamped cubic spline, in contrast, is constructed so that its slope takes on specific

values at the boundary knot points.5 The interpolated volatility function we use is

constructed as a clamped cubic spline, with a slope of zero at the boundary knot

points. We use the input data on the implied volatility smile as the knot points of the

spline. The slope of the fitted spline is thus zero at the highest and lowest exercise

prices in the data. The spline is smooth at those transitions, since continuity of the

second derivatives is still imposed. The extrapolated spline values beyond those points

are then equal to the observed implied volatilities for the highest and lowest exercise

prices.6

Let {(x1, σ1), . . . , (xn, σn)} represent the input data set or knot points, ordered so
xi > xi−1, i = 2, . . . , n, and let f (x) represent the fitted clamped cubic spline. (As
noted, the units of the xi are different for different asset types.). The interpolating

function with its flat-line extensions is defined as the piecewise function

σ(x) =

⎧⎨
⎩

σ1 for x < x1
f (x) for x1 ≤ x < xn
σn for x ≥ xn

5Klugman, Panjer and Willmot (2008), pp. 534ff., provides the recipe for constructing a clamped

cubic spline, as well those for natural and other types of cubic splines. The recipes are also contained

in many other numerical math and computing books. Neuberger (2012) applies a cubic spline to inter-

polate volatility data; Neuberger (2012) and Carr and Wu (2009) extrapolate the implied volatilities of

the boundary points, but without incorporating the clamping into the spline fitting procedure. Bliss and

Panigirtzoglou (2002) and (2004) implement flat-line extrapolation of a natural spline by introducing

additional synthetic data points with implied volatilities equal to those observed for the highest and

lowest exercise prices and with exercise prices outside that range.
6Our interpolating function is not a smoothing spline, as employed for example by Bliss and Pani-

girtzoglou (2002) and (2004); it passes through, rather than close to, all the knot points. A smoothing

spline requires additional procedures to ensure that no-arbitrage conditions are preserved after fitting

the interpolating function, and introduces additional concerns about inferring rather than observing

data.
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The highest and lowest exercise prices for which implied volatility data are observed

are generally not quite extreme enough to set the estimated risk-neutral probabilities

equal to 0 or 1. It is therefore necessary to extrapolate the interpolated smile, and thus

the estimated call valuation function, beyond those strikes to obtain a complete RND.

Clamping the interpolated smile so that the extrapolated segments are parallel to the

x-axis at the extreme implied vols ensures that the call valuation function is monotonic

and convex to the origin in the exercise price, avoiding violations of no-arbitrage

restrictions. Volatility smiles are typically U-shaped or L-shaped. Extrapolating a

steep slope out to high or low exercise prices can cause, for example, a call to have a

higher value than a call with a higher exercise price.

Flat-line extrapolation gives the tails of the fitted RND a lognormal shape beyond the

highest and lowest exercise prices in the input data. Figlewski (2010) proposes the

alternative of first estimating the central portion of the RND using the available input

data, and then grafting tails onto it that follow a generalized extreme value (GEV)

distribution. The GEV distribution has better empirical support than the lognormal

as a description of extreme return behavior. The parameters of the GEV distribution

for each tail are estimated by having it coincide with a “penultimate” tail segment of

the observable data-based portion of the RND. However, if observable option price

inputs are available for exercise prices deep in the tails, there is likely to be only a small

impact on estimated probabilities, as these will be already very close to zero or one. If

observable option prices do not extend far into the tails, the GEV distribution-based

tails will be estimated from less suitable data closer to the center of the distribution.

Extrapolation raises an uncomfortable question: Are we just inventing the risk-neutral

tail behavior our procedure will later appear to infer from the data? To some extent,

the answer is yes. The input data have to be far enough out-of-the-money for the risk-

neutral distributions to be accurate, and we shouldn’t be too trustful of statements

about outcomes far beyond the exercise prices in the input data. But it’s unrealistic

to expect data of acceptable quality to typically extend to the points on exercise price

axis at which the risk-neutral density is very close to zero. The choice therefore is not

whether to extrapolate, but how to extrapolate while adding as little assumed behavior

as possible to the available data.

2.4 Addressing violations of no-arbitrage restrictions on the call

valuation function

The key model-free arbitrage condition is that the European call valuation function

is decreasing and convex with respect to the exercise price. These basic no-arbitrage

restrictions imply corresponding restrictions or bounds on the shape of the volatility

7



smile.7

Since the typical volatility smile is U-shaped, flat-line extrapolation seems at first less

accurate than continuing the up- or downward sloping behavior. But keeping the

slope constant over the extrapolated intervals will at least sometimes lead to arbitrage

violations. It makes sense in some contexts, such as the study of market liquidity, to

admit the possibility that they occur, but construction of risk-neutral densities is not

one of them.

(i) Violations of the slope restrictions

The first slope restriction states that the call value can’t rise as the exercise price

rises, that is, the exercise-price delta can’t be positive:

∂

∂X
c(t, X, τ) ≤ 0. (5)

A related restriction pertains to put values, namely, that they are increasing in the

exercise price. We can express the put restriction in terms of the exercise-price delta

of a call by invoking put-call parity.8 It states that the absolute value of the call’s

negative slope with respect to the exercise price can’t exceed the risk-free discount

factor:
∂

∂X
c(t, X, τ) ≥ −e−rt τ . (6)

The validity of these restrictions can also be seen from (1), which shows the con-

sequences of violating them: the risk-neutral cumulative probabilities will not tend

toward zero (unity) for very low (high) terminal underlying prices, and will therefore

not meet the definition of a probability distribution function.

Each of these restrictions leads to a restriction on the slope of the volatility smile.

Differentiate (4) to express the slope of the call valuation function in terms of the

7The no-arbitrage restrictions on option values are laid out in many option-pricing textbooks, e.g.

Cox and Rubinstein (1985), ch. 4. No-arbitrage restrictions on volatility smiles are laid out in Hodges

(1996). Äıt-Sahalia and Duarte (2003) discuss the no-arbitrage conditions on volatility smiles in relation

to estimation of RNDs.
8To re-express this condition, differentiate the statement of put-call parity

p(t, X, τ) = c(t, X, τ) +Xe−rtτ − St
where p(t, X, τ) represents the put value, with respect to X to get

∂

∂X
p(t, X, τ) =

∂

∂X
c(t, X, τ) + e−rt τ .

8



slope of the volatility smile and of the Black-Scholes sensitivities with respect to the

exercise price and volatility, denoted by argument subscripts:

∂

∂X
c(t, X, τ) = vX(·) + vσ(·) ∂

∂X
σ(t, X, τ).

Substituting into the no-arbitrage restrictions (5)–(6) gives us

vX(·) + vσ(·) ∂
∂X
σ(t, X, τ) ≤ 0

vX(·) + vσ(·) ∂
∂X
σ(t, X, τ) ≥ −e−rt τ ,

in turn implying an upper and a lower bound on the slope of the volatility smile:

∂

∂X
σ(t, X, τ) ≤ −vX(·)

vσ(·) > 0 (7)

∂

∂X
σ(t, X, τ) ≥ −vX(·) + e

−rt τ

vσ(·) < 0. (8)

The sign and magnitude of each of the bounds stated in (7)–(8) derives from those of

the Black-Scholes sensitivities. The Black-Scholes exercise-price delta vX(·), like that
of the call valuation function, is negative and obeys vX(·) > e−rt τ . For low exercise
prices, vX(·) is close to −e−rt τ , that is, slightly flatter than −1 for short tenors and
typical interest rates. For high exercise prices, it flattens toward a slope of zero. The

Black-Scholes vega vσ(·) is always positive, and bell-curve shaped for varying exercise
prices. The upper bound (7) is thus positive, tending to zero for very high exercise

prices, while the lower bound (8) is negative, tending to zero for very low exercise

prices.

The Black-Scholes sensitivities also vary with the general level of implied volatility. For

higher volatilities, vX(·) rises more gradually toward zero as the exercise price rises,
and vσ(·) is higher for any exercise price. When volatility is high, the absolute values
of the bounds are low and thus more constraining, since the denominator of (7)–(8)

is large. A scheme for interpolating the volatility smile is therefore most apt to violate

the restrictions on the slope of the volatility smile if the general level of volatility is

high, and then only for very high or low exercise prices.

The extent to which the no-arbitrage constraints bind thus depends on the second-

order Black-Scholes sensitivities with respect to implied volatility, which are widely used

in option risk management. The most important are vanna, the sensitivity of vega to

changes in the spot price, and volga, the sensitivity of vega to changes in volatility.
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The no-arbitrage constraints (7)–(8) depend in part on volga and the “exercise-price

vanna.”9

We can think of the bounds in terms of typical U-shaped volatility smile behavior. The

bounds permit both upward- and downward-sloping volatility smiles, so a U shape does

not per se violate them. But the bounds also state that the volatility smile can’t still

be upward-sloping at very high exercise prices, and can’t still be downward-sloping at

very low exercise prices, unless vega has become exceptionally low in those intervals.

Figure 1 compares the results of the clamped cubic spline with flat-line extrapolation

to an alternative polynomial interpolation and extrapolation scheme that adheres more

closely to intuition about typical U-shaped smile behavior, using implied volatilities of

3-month options on the S&P 500 index for two dates. On the earlier date, Feb. 25,

2009, at the height of the post-Lehman financial panic, the general level of S&P 500

implied volatility was extremely high by historical standards. The flat-line extrapolation

prevents the slope of the call valuation function from falling below −e−rt τ (sloping
more steeply downward) for very low exercise prices, and from turning positive for high

exercise prices. If you look closely, even on the later date, Dec. 21, 2012, although vol

is much lower, the slope of the call function becomes a bit steeper than −e−rt τ for low
exercise prices and positive for high exercise prices when the extrapolated volatilities

are not clamped.10

There are infinite ways to interpolate the volatility smile that will not violate (7)–(8).

The clamped cubic spline approaching we propose has the conceptual advantage that

it adheres to the observable data, and adds little in the way of assumed RND behavior

to the data. It has the practical advantages that is simple, and appears to work in

all cases, making it suitable for software-like implementations requiring frequent or

routinized calculations.

(ii) Violations of the convexity restrictions

The call valuation function must be convex to the origin. The convexity restriction

can be written as
∂2

∂X2
c(t, X, τ) ≤ 0.

If this restriction is violated over some range of exercise prices, it is possible to con-

struct a butterfly consisting of long positions in the relatively cheap pair of options

9Castagna and Mercurio (2007) use vanna and volga to find the coefficients of a no-arbitrage implied

volatility interpolating function in a stochastic-volatility model.
10Note also that our interpolation technique can induce concave “sneering” or “frowning” intervals

into the generally “smirking” interpolated smile.
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struck at the ends of the range and short positions in the relatively dear option struck

at the middle of the range that brings in net premium now and can’t lose money at

maturity. Violations imply that the risk-neutral cumulative probability distribution is

falling and that the probability density function is negative over at least some part of

that range.

Even when the volatility smile appears to the eye to be quite smooth, it may still gen-

erate nonconvexities in the call valuation function over small exercise-price intervals,

particularly near knot or inflection points. A good deal of smoothing of the call val-

uation function is accomplished by spline interpolation of the volatilities. Permitting

users to vary the differencing step size Δ further smooths the interpolated volatility

smile and avoids intervals over which the density function is negative.

If Δ is set low enough, negative densities result. We’ve constructed the algorithm

so that the user can vary Δ to find a low value that nonetheless keeps the density

positive everywhere on most days. Some experimentation shows that the estimated

risk-neutral probabilities are not terribly sensitive to variations in Δ. That is, if Δ

is set high to be confident that no negative densities are generated, or Δ is set low

enough to induce negative densities over some exercise price intervals on some days,

the estimated probabilities and quantiles are not drastically changed. We’ll present an

example in the next section.

The propensity to generate negative densities, not surprisingly, is greatest when the

general level of volatility is high. A practical way to find a suitable Δ for a given

asset is to plot the density function for a date on which implied volatility is relatively

high. These dates are almost invariably in late 2008 and implied volatility is generally

a multiple of the high volatilities observed in other subperiods of the time series. A

minimum Δ can be readily found that does not induce negative densities, or induces

only slightly negative densities on a handful of extreme-volatility dates. That Δ can be

used to compute time series of tail probabilities, moments or quantiles. A procedure

could be added to the technique to find a value of Δ that avoids negative densities for

each asset on each day, though at the cost of longer computation time.

2.5 Diagnostic analysis of the technique

Diagnostics on the input data are useful to help users understand better how well

the interpolation is working, how far the extrapolation might be straying from the

unobservable market reality, and assess the potential for estimation error. We’ll provide

such a table for each of the three asset classes we cover. Among the key diagnostics:

• The option deltas tell us how far into the tails the observed data penetrate.
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• The option vega is directly related to the no-arbitrage restrictions. If vega is high
at the extremes of the input data, then the choice of extrapolation technique

has greater potential to influence the shape of the distribution. The focus here

is on how far the vega has fallen at the highest and lowest exercise prices, so

we’ll express the vega for each strike as its ratio to the vega of the at-the-money

(ATM) option.

• A version of the risk-neutral distribution based only on the input data provides
rough bounds for the risk-neutral distribution and gives us a sense of how much

estimation error there might be. Rather than fixing Δ for the entire RND, we

use the successive differences between the exercise prices of the options in the

raw data. Let Xi−1 and Xi be two of the exercise prices in the data set, ordered
so Xi > Xi−1. Then

1 + ert τ(Xi −Xi−1)−1 [c(t, Xi , τ)− c(t, Xi−1, τ)] , i = 2, . . . , n,

is an upper bound on Π̃t(Xi−1) and a lower bound on Π̃t(Xi). The upper bound
on Π̃t(Xn) is 1 and the lower bound on Π̃t(X1) is zero. Based purely on the

observed data, the true values of the Π̃t(Xi) can be anywhere in between the

upper and lower bounds.

3 Application to exchange-traded products

3.1 Data and computation

Options on exchange-traded products, primarily single stocks, indexes and futures,

trade on many exchanges and thousands of assets world-wide. The exchanges generate

raw option price data in currency terms. Processed implied volatility data are provided

by Bloomberg, as fields pertaining to a ticker. Time series history is typically available,

though how far back varies widely. “Moneyness” in the data is expressed as a ratio

to the current cash price. An example are data for 3-month options on the S&P 500

index, ticker SPX Index, as of Dec. 21, 2012. The data for SPX and other U.S.

indexes and single stocks are based on prices of CBOE options on the index.11

11The Bloomberg data for each ticker are constructed by filtering the raw end-of-day data, extracting

European option implied volatilities from the American option prices, and interpolating the results across

exercise price and tenor. The resulting surfaces are close to the intraday volatility surfaces displayed

on the OVDV screen. Some of the latter data is identified by tickers, but a field search indicates there

is no history.
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Bloomberg field mnemonic moneyness implied vol

3MTH IMPVOL 80%MNY DF 80.0 23.95

3MTH IMPVOL 90.0%MNY DF 90.0 21.71

3MTH IMPVOL 95.0%MNY DF 95.0 18.81

3MTH IMPVOL 97.5%MNY DF 97.5 17.40

3MTH IMPVOL 100.0%MNY DF 100.0 16.09

3MTH IMPVOL 102.5%MNY DF 102.5 14.88

3MTH IMPVOL 105.0%MNY DF 105.0 13.84

3MTH IMPVOL 110.0%MNY DF 110.0 12.48

3MTH IMPVOL 120%MNY DF 120.0 12.34

Computations using these data are illustrated in Figure 2 for two dates, Aug. 7, 2008,

just after the first major overt symptoms of the global financial crisis emerged,12 and

Dec. 21, 2012. The upper left panel displays the Bloomberg data and the interpolated

volatility smile. The x-axis in this and the other panels in the figure is expressed as

the proportional difference between the exercise price and the current forward index

level.

The upper right panel of Figure 2 displays the call valuation function, evaluated for

each exercise price using the interpolated smile for each date. The call prices are

expressed as a fraction of the current forward index level, calculated as Ft,τ = e
(rt−qt)τ .

Option prices for the S&P 500, forward index levels, and the diagnostics in Table 1,

are calculated using 3-month T-bill yields as a financing rate and trailing (rather than

estimated forward) 12-month dividend yields as the underlying cash flow rate.

The bottom panels of Figure 2 display the risk-neutral distribution and density func-

tions. The finite differences are calculated setting Δ = 0.025 (as a fraction of current

forward index level). For any point on the x-axis, the plot in the bottom left panel

can be read as giving the probability that the price return of the S&P 500 vis-à-vis

the current forward index level over the subsequent 3 months will be that level or less.

Table 1 displays diagnostics for the computations. The deltas of the input options

extend close to zero and unity on both dates, and the vegas are reasonably small at

the endpoints.

The distributions are typically multi-modal for SPX Index, with a left-tail hump par-

ticularly pronounced. Multi-modal behavior is both an authentic result and an artifact

of the technique. Take, for example, the left-tail hump for Aug. 7, 2008. It appears

for exercise prices roughly 10 to 20 percent below the current forward index. These

12The “quant event,” in which algorithmic equity-trading programs abruptly began experiencing losses

far in excess of prior extremes, began on Aug. 6. Paribas halted redemptions from three subprime-

focused hedge funds it managed on Aug. 9. The Federal Reserve introduced its first policy measures

to address the crisis the next day.
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are the highest implied vols on the smile. In that interval, the call valuation function

declines less slowly than it would if those low-strike implied vols were closer to the

ATM vol. Hence the risk-neutral density is high. But a spline knot point imposes an

inflection point in the smile at an exercise price equal to 1139.46. From that point,

the slope of the volatility smile goes rapidly from steep to flat. Although it is impos-

sible to discern in the graph, at that point the decline in the call valuation function

decelerates, inducing a small region in which the density is close to zero.

The hump behavior is the feature most directly affected by the smoothing parameter

Δ. For example, if Δ were set higher than the value of 0.025 used in the lower-right

plots of Figure 2, the density would be estimated by bridging across wider intervals

of the interpolated smile, reducing the variations in the convexity of the call valuation

function, and thus the propensity of the estimated risk-neutral density to rise and fall.

If Δ is set high enough, the additional mode can be eliminated, without drastically

changing the probabilities of returns of specific magnitudes.

Data on options on money-market futures are also available, but these present partic-

ular difficulties, especially in the current low-rate environment, as the actively traded

exercise-price range is highly compressed against the zero bound. For this group, how-

ever, it is relatively straightforward to construct a cruder estimate of the RND along

the lines of the diagnostic table.13

3.2 Time series of tail risk estimates

The results can be used to compute time series of statistics of interest, including

moments, quantiles and the probabilities of returns of specified sizes. For example,

we can represent risk-neutral tail risk as the probability of a decline in the S&P of a

specific large magnitude. Determining a magnitude to focus on raises similar issues

to stress testing in risk management, namely, finding a shock that qualifies as very

severe, but is nonetheless plausible and in the realm of possibility. If we choose a very

high shock, its risk-neutral probability will almost always be zero. If we choose too

small a shock, its risk-neutral probability will almost always be very high. Either way,

little insight is gained.

One way to find a useful shock magnitude is through this back-of-the-envelope cal-

culation: If returns were normally distributed, a decline (or runup) of about 2.33

standard deviations would have a probability of one percent. The long-term average

annualized implied as well as realized volatility of S&P 500 price returns is roughly

13The Bloomberg data for EDA Comdty contain only three distinct values for the 3-month tenor, and

it is unclear if the interpolation technique they apply generally to exchange-traded options is well-suited

to money-market futures.
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20 percent. A rough estimate of the first percentile of 3-month returns is therefore

−20 × 2.33 × √0.25 = −23.3 percent. Avoiding exact numbers, so as not suggest
that this is a precise estimate, the risk-neutral probability of a 20 or 25 percent decline

in the S&P 500 is a reasonable representation of tail risk. We have a mild preference

for 20 percent, since it is the lowest observed exercise price in the data and reduces

reliance on extrapolation.

The results are displayed Figure 3, covering the period since end-Nov. 2005. The upper

panel displays the probability of a three-month decline in the S&P 500 of at least 20

percent. The lower panel displays the first percentile of the S&P 500 price return,

displayed as a positive number in percent, in other words, the value-at-risk (VaR) of

a long S&P 500 position, expressed in return terms, at a 99-percent confidence level.

Risk-neutral tail risk was low prior to the crisis, apart from a brief but sharp increase

in mid-2006. At the end of Feb. 2007, tail risk increased sharply, and again after

the quant event of August 2007. Tail risk peaked following the Lehman bankruptcy

at a probability near 35 percent of a further decline of the S&P 500 in excess of 20

percent over the subsequent quarter. The tail probability is low at the time of writing,

just a few percent, but remains generally higher than pre-crisis and fluctuates quite a

bit more than pre-crisis. The extreme quantile or VaR of the distribution tracks the

probability closely, ranging from about 20 percent before and after the crisis to about

60 percent at its peak in late 2008.

To gain some insight on the the effect of different settings for Δ, Figure 4 compares

the estimated tail risk time series for two values, Δ = 0.025 and Δ = 0.100, each held

constant over the entire observation interval. The time series are very close to one

another. The correlation of the two probability series is 0.997 and the correlation of

their daily first differences is 0.977.

As an example of how the techniques can be applied to single stocks, and perhaps

interesting in its own right, Figure 5 displays equity tail risk for American International

Group, Inc. from late 2007 until the Friday preceding the Lehman bankruptcy filing,

Sep. 12, 2008. Tail risk is measured by the risk-neutral probability of a decline of

50 percent or more in the stock price, which can be plausibly said to represent the

risk of a corporate bankruptcy. It is somewhat uncomfortable far from the observed

data, but that far in the tails, the vega is likely very low even for high volatility levels,

and the exercise-price delta very close to −e−rt τ . If there is significant error in the
extrapolation, relative to the unobserved “true” market volatility levels, there will be

more (or less) probability mass between −50 and −20 percent, and less (or more)
between −100 and −50 percent.
The probability is close to zero for most of the period, rising a bit during periods

of fear near the end-2007 and Bear Stearns. The “failure probability” began to rise

rapidly during July 2008, as market concerns about losses at Fannie Mae and Freddie
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Mac intensified rapidly. By Sep. 12, the Friday before the Lehman bankruptcy filing,

the probability reached 40 percent, but most of that runup had taken place during the

previous few days.

A characteristic of risk-neutral tail risk behavior that appears clearly in Figures 3 and 5

is its propensity to have risen very abruptly when it is high. Tail risk measures tend to

decline gradually from these peaks—unless, as in the AIG case, the peak proves to be

terminal. Peaks in tail risk are associated with and subsequent to an event, but occur

when market-adjusted tail risk has been relatively low. These characteristics seem to

indicate that high tail risk estimates do not provide reliable early warning signals of

risk events.

But periods of low tail risk estimates, especially if interrupted by sudden transitory

spikes in tail risk unaccompanied by major events, such as those of June 2006 and

February 27, 2007, may indicate unease in markets that can lead to future risk events.

This observation is closely related to the “paradox of volatility,” in which low volatility is

associated with the buildup of financial imbalances, rising leverage and higher financial

stability risk.

4 Application to currencies

4.1 Data and computation

Prices of options on currencies and precious metals are typically expressed by traders

as Black-Scholes implied volatilities. The exercise price of an at-the-money option is

generally understood to be equal to the current forward rather than spot exchange

rate with a time to settlement equal to the option tenor, and the option is called

at-the-money forward (ATMF).

The exercise prices of in- and out-of-the-money currency options are typically expressed

in terms of the Black-Scholes delta

vS(·) ≡ ∂

∂St
v(St , τ, X, σ, rt, qt). (9)

For this data structure, therefore, it is most convenient to think of the Black-Scholes

volatility surface as a function σ(t, δ, τ) of the date, tenor and delta rather than

exercise price. Computation of prices of options in currency units for trade-settlement

purposes is easy via the Black-Scholes formula.

Currency options are typically traded as combinations: straddles, strangles and risk

reversals. Strangles and risk reversals, which are combinations of out-of-the-money
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options, typically have a delta of 0.10 or 0.25. These combinations can be readily

converted into prices of individual options with the specified deltas. For example,

consider a 25-delta one-month strangle. Its price is quoted as the implied vol spread

or difference between the average implied vols of the 25-delta put and call, which are

not directly observed, and the ATMF put or call vol.

strangle price =
1

2

[
σ

(
t, 0.25,

1

12

)
+ σ

(
t, 0.75,

1

12

)]
− ATMF vol,

The risk reversal quote is the implied vol spread between the two “wing” options:

risk reversal price = σ

(
t, 0.25,

1

12

)
− σ

(
t, 0.75,

1

12

)
.

Note that strangle and risk reversal are quoted as vol spreads, while the ATMF is a

vol level. Using these definitions, the vol levels of the wing options can be inferred

from the strangle, risk reversal, and ATMF quotes:

σ

(
t, 0.25,

1

12

)
= ATMF vol + strangle price +

1

2
× risk reversal price

σ

(
t, 0.75,

1

12

)
= ATMF vol + strangle price − 1

2
× risk reversal price

Analogous formulas describe the 10-delta versions of these standard option combina-

tions, and versions for other tenors. From them, we can obtain the 10-, 25-, 75-, and

90-delta implied volatilities. The ATM and ATMF options have deltas close to, but

not exactly, equal to 0.50. We obtain an option with a delta near 50 from the ATMF

option, using (9) to compute the exact delta.

Foreign-exchange option price data is available from a number of data providers and

dealers. The data used here are downloaded from Bloomberg, which stores implied

volatility histories for each point on the volatility surface—tenor and exercise price—

for each currency pair, as a distinct ticker. The data are aggregated, filtered and,

possibly, interpolated from a number of dealer quotes. Bloomberg’s currency option

data appear generally to be the highest quality of the three structures discussed here.

The data structure is illustrated here using 1-month options on EUR-USD, the price

of a Euro in dollars, as of Dec. 31, 2012.14

14Data are also available for the 1-week, 3-, 6-, and 12-month, and 10-year tenors.
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Bloomberg ticker description implied vol/spread

EURUSDV1M Curncy EUR-USD OPT VOL 1M 8.2200

EURUSD25R1M Curncy EUR-USD RR 25D 1M -0.3025

EURUSD25B1M Curncy EUR-USD BFY 25D 1M 0.1050

EURUSD10R1M Curncy EUR-USD RR 10D 1M -0.4875

EURUSD10B1M Curncy EUR-USD BFY 10D 1M 0.2875

Transformed into a volatility smile in (δ, σ)-space, the data become

delta implied vol

0.1000 8.26375

0.2500 8.17375

0.5015 8.22000

0.7500 8.47625

0.9000 8.75125

Once the input data has been prepared, the volatility smile can be interpolated. We

carry out the interpolation via a clamped cubic spline, but in (δ, σ)- rather than (X, σ)-

space. The x-axis values 0.10, 0.25, 0.75, and 0.90 are the same on each date, but the

center knot point has a slightly different x-axis value near 0.50 each day. Options with

deltas below 0.10 are assigned the 10-delta volatility and options with deltas above

0.90 are assigned the 90-delta volatility.

For this data structure, there is an additional step following interpolation, by which

the smile in (δ, σ)-space is transformed into one in (X, σ)-space. This is slightly less

simple than it might seem, as we can’t map directly from exercise price to delta via

(9), and then to the smile in (δ, σ)-space. The reason is that the volatility argument

in (9) is not constant, but itself varies with delta.15

The computation is as follows: Substitute the expression for the Black-Scholes delta

into the interpolated smile σ(t, δ, τ). For any stipulated X◦, and for fixed values of
the other arguments, we can solve

σ◦ = σ [t, vS(St, τ, X◦, σ◦, rt , qt), τ)]

numerically for σ◦.16

15We don’t have that problem when calculating the delta of the ATMF option because we have a

fixed exercise price and volatility.
16In one approach to RND construction from data on exchange-traded options, implied volatilities

initially associated with exercise prices are converted to volatilities associated with the corresponding
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This transformation is illustrated in Figure 6 for two dates, May 22, 2009 and Nov.

18, 2011. The input data and the initial smile interpolation, carried out via a clamped

cubic spline, are displayed in the left panel. The x-axis is in delta units. The volatility

smiles in the right panel are computed from those in the left panel. They are not

derived by a fresh interpolation but rather functionally, from the interpolated smile in

(δ, σ)-space, via the numerical procedure described in the previous paragraph. Note

that the direction of the x-axis is reversed between the two graphs. On the later date,

options with especially high payoffs if the dollar appreciates sharply vis-à-vis the euro

have high implied volatilities. These correspond to low exercise prices in currency units

but high call deltas.

Computations using these data are illustrated in Figure 7 for the same two dates as in

Figure 6, May 22, 2009 and Nov. 18, 2011. In all four panels, the x-axis is expressed

as the proportional difference from the 3-month forward rate (USD per EUR). The

RND estimates are computed using Δ = 0.005 (as a fraction of the forward rate).

Option prices for EUR-USD, forward exchange rates, and the diagnostics in Table 2,

are calculated using 1-month U.S. dollar and euro Libor rates as the financing and

underlying cash flow rates.

The two dates display a sharp contrast in the direction of skewness of the risk-neutral

distribution. On the earlier date, there is a sharp skew toward a weaker dollar, while

on the later date there is a skew toward a stronger dollar.

Diagnostics for the data and computations are shown in Table 2. The deltas of the

input options, naturally, extend exactly from 0.10 to 0.90, but the vegas are reasonably

small at the endpoints. The data are somewhat better-behaved than the S&P 500

option data; the foreign-exchange option data permit a smaller step size in differencing

without encountering non-convexities.

4.2 Time series of tail risk estimates

An example of how the results can be applied is displayed in Figure 8. The upper panel

plots time series of the risk-neutral probabilities of the dollar appreciating and depreci-

ating by 7.5 percent or more over the subsequent month.17 The lower panel plots the

deltas using (9). Interpolation is then carried out in (δ, σ)-space. The conversion to deltas may be

done using the same at-the-money volatility for all strikes (so-called “point conversion”) or using each

strike’s volatility (“smile conversion”) to avoid cases in which segments of the volatility smile are so

steep that an option may have a lower call delta than another with a higher exercise price. Bu and

Hadri (2007) discuss the phenomenon, which intuitively seems likely to be due to no-arbitrage violations

in the data. The issue doesn’t arise with our technique because we are going from input data sets in

(δ, σ)-space to (δ,X)-space rather than vice versa.
17This seems like a reasonable threshold: volatility for EUR-USD is typically in the neighborhood of

10 percent. If exchange rate returns were normally distributed, the first and last percentiles of 1-month
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difference between these probabilities, and highlights the direction and magnitude of

the skew in tail risk estimates. In contrast to the S&P 500 and other equity indexes,

the tail risk skew for major currency pairs can and does change direction.

Tail risk first began to rise sharply around the time of the Bear Stearns failure and

spiked following the Lehman filing. Since Lehman, tail risk has often been very high,

and the risk-neutral probability of a sharp dollar appreciation has generally been much

higher than that of a depreciation. This pattern likely reflects safe-haven positioning,

as it began well before the European debt crisis, but was reinforced as the latter played

out.

Both the level of risk-neutral tail risk and its skew to a weaker euro rose steadily

through 2011, but dropped abruptly following the announcement by the European

Central Bank of its longer-term refinancing operations (LTROs) on December 8, 2011.

Tail risk has most recently dropped back to pre-2008 levels, and the directional dif-

ference between dollar appreciation and depreciation is near zero, in spite of a steady

appreciation of the euro vis-à-vis dollar amounting to 15 percent since mid-2012.

5 Application to swaptions

5.1 Data and computation

Standard swaptions are options that exercise into a payer or receiver position in a

LIBOR interest-rate swap. They are one of the two more-liquid types of markets in

which exposures to longer-term interest rates are traded.18 The other type is options

on government bond futures. Swaption data are better suited than implied volatilities

derived from bond futures options prices for computing interest-rate RNDs:

• Swaptions have a fixed term to maturity rather than a fixed maturity date,
generating a time series of expectations measures with a fixed horizon without

requiring interpolation across maturities.

• Swaption prices map directly into interest-rate expectations, rather than indi-
rectly via bond prices.

• Prices of options on bond futures include compensation for the delivery option,
and switches in the cheapest-to-deliver can distort their signals of interest-rate

prospects.

returns would be about ±10× 2.33×
√
0.0833̄ = ±6.73 percent.

18Breeden and Litzenberger (2013) describe a technique for extracting RNDs of shorter-term rates

from implied volatilities of caps and floors.
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One disadvantage of swaption data should also be mentioned: The underlying price

of a swaption is the LIBOR swap rate, rather than the risk-free rate, which may differ

from the risk-free rate for a number of risk- and liquidity-based reasons.

Swaption implied volatility data are available on Bloomberg. They are expressed as

Black or lognormal vols, that is, as the standard deviation of logarithmic changes

in the forward swap rate for the given swaption “tail” (swap maturity) and tenor

(option maturity), expressed in percent units at an annual rate. The data are based

on quotes aggregated by Bloomberg from submissions by several contributing dealers.

Bloomberg interpolates across strikes when data is missing. The data appear to be of

reasonably good quality from early 2013 on.

A wide range of tails and tenors are priced. Option tenors range from 3 months to

20 years and underlying swap tails from 2 to 30 years. Exercise prices range from 200

basis points below to 200 above the current forward swap rate for the given tail and

tenor. For tenors and tails with forward swap rates that are close to the zero bound,

there are no recent data for exercise prices 200 basis points below the forward swap

rate, as these would be exercisable only if longer-term rates turned negative.19

As with other types of options, expressing the value of a swaption in terms of an

implied volatility based on a particular model of interest-rate behavior does not mean

the market believes in that model. Rather, it represents a convenient unit for expressing

the value or market price of the swaption.

Black vols fit without much further ado into our RND computation scheme. The data

structure on Sep. 5, 2013 for “2-year into 10-year” swaptions—2-year options on

10-year swaps—was

Strike Bloomberg ticker description Black vol

-200 USPAV07C Curncy USD BVOL SWPT-200 2Y10Y 32.5790

-100 USPAV04K Curncy USD BVOL SWPT-100 2Y10Y 28.9314

-50 USPAV036 Curncy USD BVOL SWPT-50 2Y10Y 27.8261

-25 USPAV02H Curncy USD BVOL SWPT-25 2Y10Y 27.3975

0 USSV0210 BBIR Curncy USD SWPT BVOL ATM 2Y10Y 27.0250

25 USPAUZA1 Curncy USD BVOL SWPT 25 2Y10Y 26.7361

50 USPAUZAQ Curncy USD BVOL SWPT 50 2Y10Y 26.4866

100 USPAUZC4 Curncy USD BVOL SWPT 100 2Y10Y 26.1151

200 USPAUZEW Curncy USD BVOL SWPT 200 2Y10Y 25.7388

19The available Bloomberg tickers and data can be identified by configuring the VCUB or interest

rate vol cube function. The configuration tab enables the user to select and display contributed Black

vols for OTM swaptions.
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The exercise prices are equal to the 10-year swap rate 2 years forward on Sep. 5, 2013,

4.0888, less the stipulated moneyness, expressed in basis points in the first column.

The forward swap rate is today’s market assessment of the fixed rate that sets to

zero the net present value of a 10-year fixed-for-floating swap initiated 2 years hence.

The Black vols (percent per annum) in the last column are the input data provided by

Bloomberg.

The Black formula for the price of a swaption in currency units is the product of three

terms: (i) the notional amount, (ii) the “bps running” or annuity or present value per

basis point of the payments by the fixed leg of the swap, and (iii) the Black-Scholes

option value formula applied to the current swap rate as though it were a proper asset,

and with the risk-free or financing rate set to zero. We can ignore the first two terms,

which are invariant across exercise prices. The last component can be written as

ert τv [Ft,τ , X, τ, σ(t, X, τ), 0, 0] for a payer swaption, where Ft,τ is the current forward

swap rate for a swap initiated τ years hence.20 A payer swaption gives its owner the

right to enter into a swap at a fixed rate X, and is analogous to a put on a bond, and

to a call in interest-rate terms.

In essence, the swaption valuation formula has a component containing the expected

value of changes in the swap rate vis-à-vis the current forward value in excess of a

given strike rate, and a component expressing how much that expected value is worth.

The Black formula gives the value of the option in interest-rate terms. It is converted

into currency units using the notional amount and the annuity value.

With these modifications, the same calculation procedure as for exchange-traded prod-

ucts can be used to compute the RND. The computations are illustrated in Figure 9

for two dates, May 1, 2013 and Sep. 5, 2013. We use a small Δ = 0.0001 (1 basis

point), so this data structure can be said to be relatively cooperative with our tech-

nique. The x axis in the upper panels of the charts is expressed as differences from

the forward swap rate in basis points, analogous to the previous examples. In the

lower panels, the distribution and density are represented as functions of the terminal

10-year swap rate.

Diagnostics for the computations are displayed in Table 3. We see that the data

extend far enough above and below the forward swap rate that the deltas cover much

of the interval (0, 1). The vegas for the highest and lowest exercise prices are fairly

low. We are applying a version of the Black formula that isn’t discounted to the

present by the risk-free rate, so low-strike call deltas can be very close to unity.

The volatility smile and the implied RNDs are heavily influenced by the proximity of

spot and forward swap rates to the zero bound. On the earlier date, the implied RND

is skewed quite strongly to higher rates, and on the later date, much less so. But

20The term of the swap isn’t displayed in the notation.
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on both dates, implied volatilities of low strike options close to the zero bound are

higher, not lower, than those of high-rate strikes. A distribution skewed to the left is

incompatible with low rates.

5.2 Time series of tail risk estimates

As we did for other asset classes, we’ll illustrate the results with time series of tail

risk estimates. We use changes in basis points vis-à-vis the current forward swap rate

rather than proportional changes to represent extreme moves. In Figure 10, the top

two panels display the risk-neutral probabilities of specific changes in rates, while the

lower panel displays the probabilities of rates reaching specific levels.

The upper panel displays probabilities of changes of at least 200 basis points. From

the beginning of May 2013, the probabilities both of very large decreases and increases

in rates, as well as the forward rates themselves, began to rise. The probability of a

sharp drop in rates rose faster, but the probability of a rate rise accelerated following

the Chairman’s May 22 Joint Economic Committee testimony. As forward rates rose,

these probabilities drew closer together. By the time rates peaked in early September

2013, the tail probabilities were nearly equal. More recently, a skew to sharply higher

has been re-established, but it is less pronounced than in early 2013.

The probabilities of changes of at least 100 basis points, displayed in the center panel

of Figure 10, also rose in 2013. These probabilities are more nearly equal to each

other than those of more extreme rate moves, as one would expect of events closer

to the center of the distribution.

Proximity to the zero bound makes it more difficult to interpret risk-neutral interest-

rate distributions, because it is hard to distinguish between the effects of movement

away from or toward the zero bound from other influences on the shape of the dis-

tribution. The impact of proximity to zero is similar to the pattern seen in the lower

panel of Figure 10, which displays the risk-neutral probabilities of the rate ending at

5 percent or higher, or at 2 percent or lower. These probabilities are driven in large

part by how close to these thresholds the current forward rate happens to be.

Similarly, when rates are close to zero, the probability of a large decline cannot be

high, because there is nowhere for rates to go but up. When the forward swap rate is

relatively low, it is more strongly correlated with the risk of sharply lower rates. When

the swap rate is relatively high, it moves more closely with the risk of a drastic rise in

rates. The level of rates, however, is not the only determinant of rate RNDs. Since

their early September peak, 10-year swap rates 2 years forward have fluctuated in a

range between about 31
2
and 4 percent. During that time, overall rate volatility has

declined, and the probability of a decline in rates of at least 200 basis points has fallen

relative to that of a rise in rates of the same magnitude.
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6 Conclusion

The technique for estimating risk-neutral RNDs described here appears to work well

with several different data structures, and is relatively easy to program and use. There

is considerable demand, particularly in central banks, to apply risk-neutral probabilities

in market monitoring and policy work, and our technique should make it possible to

take some of the effort out of creating the RNDs.

That effort would be better focused on other aspects of RNDs. As far as the quality

and reliability of the results is concerned, assembling and filtering better-quality data

sets is one challenge. But perhaps the most important open task with respect to

risk-neutral RNDs remains how to use and interpret them.
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Figure 3: Risk-neutral S&P 500 tail risk

quant

Lehman

Greece

debt deal

2006 2007 2008 2009 2010 2011 2012 2013 2014
0

5

10

15

20

25

30

750

1000

1250

1500

1750

Probability of a 3�month decline of at least 20 percent

quant

Lehman

Greece

debt deal

2006 2007 2008 2009 2010 2011 2012 2013 2014

20

30

40

50

60

750

1000

1250

1500

1750

99�th percentile of loss distribution

Upper panel:Risk-neutral probability of a 3-month decline of at least 20 percent (black plot,
left axis). Lower panel: (−1)×first percentile of the risk-neutral cumulative distribution of
3-month S&P 500 price returns, percent (black plot, left axis). Δ = 0.025, Nov. 21, 2005 to
Mar. 20, 2014. Purple plot (right axis): logarithm of the S&P 500 index; axis labels show the
index level.
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Figure 8: Risk-neutral currency tail risk: EUR-USD
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Upper panel: Black (orange) plot (left axis): risk-neutral probability of a 1-month dollar
appreciation (depreciation) of at least 7.5 percent vis-à-vis the euro. Lower panel: Difference
between risk-neutral probability of a 1-month dollar appreciation of at least 7.5 percent vis-
à-vis the euro minus that of depreciation. Purple plot (right axis) in both panels: EUR-USD
spot exchange rate. Jan. 3, 2006 to Mar. 25, 2014, Δ = 0.005.
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Figure 10: Risk-neutral interest-rate tail risk
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Upper panel: black (blue) plot (left axis) risk-neutral probability of a 2-year increase (decline)
of at least 200 bps in the 10-year swap rate vis-à-vis the current forward swap rate. Center
panel: black (blue) plot (left axis) risk-neutral probability of a 2-year increase (decline) of at
least 100 bps in the 10-year swap rate. Lower panel: black (blue) plot (left axis) risk-neutral
probability that the 10-year swap rate will be 5 percent or higher (3 percent or lower) in 2
years. Purple plot (right axis): forward swap rate. Feb. 1, 2013 to May 2, 2014; Δ = 0.0001
(1 bp).
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