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Three Aspects of Big Data

• Large size 

• High dimension
– A large number of variables relative to the sample size 

• Complex structure
– Not in traditional row-column format
– Satellite images, social media, and credit card transactions 
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Roadmap 

• Large size 

• High dimension
– Large number of variables relative to the sample size 

• Complex structure
– Not in traditional row-column format 
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Small vs. Large Data 

• Smaller datasets often involve selection processes from larger datasets 
– Smaller sample size
– Fewer variables 
– Aggregations of economic activity 
– Snapshot of economic activity  

• Are there sample selection biases in smaller datasets?  
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Size of Trade and Quote Data (TAQ) 

• NYSE, NASDAQ, and regional
exchange listed securities

• All trades and quotes reported to
the consolidated tape
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Type 

Timestamp 
(nanoseconds) 

Order 
Reference 
Number 

Buy/
Sell 

Shares Stock Price Original 
Order 

Reference 
Number 

Market 
Participa

nt ID 

A 53435.759668667 335531633 S 300 EWA 19.50   
F 40607.031257842 168914198 B 100 NOK    9.38  UBSS 
U 53520.367102587 336529765  300  19.45 335531633  
E 53676.740300677 336529765  76     
C 57603.003717685 625843333  100  32.25   
X 53676.638521222 336529765  100     
D 53676.740851701 336529765       
A Add order anonymously 
F Add order with market participant ID  
U Update: replace old order with a new order  
E Order execution  
C Order executed with price message 
X Partial cancellation 
D Order deletion  

Larger Data: Order Level Data  
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Research Question  

• Are there selection biases in TAQ data? 

• Method: Compare TAQ data with order level data 
– A large dataset and a larger dataset

• Solution: high performance computing  
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Selection Bias Led by Regulations 

• Previous regulations: No need to report trades less than 100 shares (odd lots) 
– Rationale: Odd lots are from small retail traders 

• Consequence: Odd lots are missing from TAQ data 

• O’Hara, Yao, and Ye (2014) find: 
– 25% of trades are unreported in 2011
– More trades are missing for high-priced stocks 

• Google: 53% of trades, 23% of volume  
• Apple: 38% of trades, 14% of volume 

8



Are Odd Lots from Retail Traders?   

Sequence Symbol Hour Minute Second Millisecond Shares Buy/Sell Price Type
1 AAPL 13 59 1 107 20 S 125.00 HN
2 AAPL 13 59 1 107 10 S 125.00 HN

………
108 AAPL 13 59 1 107 50 S 125.00 HN
109 AAPL 13 59 1 107 50 S 125.00 HN
110 AAPL 13 59 1 107 30 S 125.00 HN
111 AAPL 13 59 1 107 3 S 125.00 HN
112 AAPL 13 59 1 110 47 S 125.00 HN
113 AAPL 13 59 1 110 80 S 125.00 HN
114 AAPL 13 59 1 110 80 S 125.00 HN

……
210 AAPL 13 59 1 110 5 S 125.00 HN
211 AAPL 13 59 1 110 25 S 125.00 HN
212 AAPL 13 59 1 110 50 S 125.00 HN
213 AAPL 13 59 1 110 12 S 125.00 HN
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Machines Challenge Regulations

• Computers can reduce large orders to small odd lots 
– Benefit: Hide information 
– Odd lots are more informed than trades greater than or equal to 100 shares 

• Policy impact: Regulators reduce report threshold from 100 shares to 1 share 
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Size Challenges 

Techniques 
• High performance computing  helps to overcome size challenges 

Economic insights 
• Open question for policy   

– Many regulations were designed for humans
– Should regulations be revised for machines? 

• Are there selection biases in other “small” datasets? 
– Can larger datasets lead to different results?  
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Roadmap 

• Large size 

• High dimension
– Large number of variables relative to the sample size 

• Complex structure
– Not in traditional row-column format 
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Does Machine Learning Capture Any Economic Signal?

• Firms that use machine-learning techniques to make investment decisions,
such as Renaissance Technologies and Two Sigma Investments, operate at
timescales ranging “anywhere from a few minutes to a few months.”
– The Wall Street Journal (May 21, 2017)

• Chinco, Clark-Joseph, and Ye (2017) 
– Examine this question at minute-by-minute horizon
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• Basic idea: Use lagged stock returns to forecast 𝑟𝑟𝑛𝑛,𝑡𝑡+1

• Data: One-minute returns of other (≈ 2,000) NYSE-listed stocks

• OLS requires at least 2,000 observations (six trading days) 
• Too many RHS variables for OLS

• Hard-to-capture signals that are unexpected and short-lived  

• We use machine learning techniques to reduce dimensions    

High Dimensional Challenges 

14



LASSO-Implied Trading Strategy: 2005-2012  
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Economic Foundation   

• LASSO is more likely to pick a stock as a predictor before its news announcements
– Even if we use the millisecond news feeds like RavenPack

• Big data incorporate information faster than news announcements
– A story 

• Writing news articles takes time, especially for unscheduled events 
– The difference between public information and news

• Empirical evidence
– LASSO is more likely to pick a stock as a predictor before unscheduled news
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High Dimensional Challenges 

• Techniques 
– Machine learning techniques deal with high dimensional data

• Economic insights 
– Determining economic interpretations is a higher hurdle 
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Roadmap 

• Large size 

• High dimension
– A large number of variables relative to the sample size 

• Complex structure
– Not in traditional row-column format

• Big data motivate new economic theories
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Example: Twitter Data 
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Two Challenges

• Techniques: How to extract information from unstructured data? 
– One solution: Find a data vendor 

• J.P. Morgan’s Big Data and AI Strategies (2017) provides a list of 500 alternative data vendors
• Many vendors transfer unstructured data to structured data.

– Another solution: interdisciplinary collaboration 

• Economics: Do unstructured data generate unique measures of economic activity?  
– More challenging

• Example: Da, Nitesh, Xu, and Ye (2017)
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Unique Measures from Big Data

• Information diffusion
– Word-of-mouth communication: No direct measure without big data 

• Two traditional solutions
– Proxies: Physical proximity (Hong, Kubik, and Stein, 2005; Ivkovich and Weisbenner, 

2007; Brown et al., 2008) and common schooling (Cohen, Frazzini, and Malloy, 2008)
– Criminal investigations (Rantala, 2015; Ahern, 2016)

• Big data solution
– Measure information diffusion using tweets and retweets
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@Zhi: Twitter data are unstructured ...

@Nitesh @Zhi: Twitter …

@Jian @Nitesh @Zhi: Twitter …

Nitesh has 100,000 followers

Information Diffusion through Retweets  

Zhi has 10,000 followers

Jian has 5,000 followers
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Speed of Information Diffusion   
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Da, Nitesh, Xu, and Ye (2017) 

• Social media can spread stale news 
– When someone retweets news, it is already stale

• Stale: Ten minutes after the initial release from a news outlet  
– Retail traders still respond 

• Create temporal price pressures 
• Prices first overshoot then revert to the next day  

• Smart traders should trade against stale news 
– Profit opportunity: Sell after stale good news and quickly buy back
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Machines vs. Humans?  

• Reversion speed in our sample period (2013–2014) is much faster than 
reported in Tetlock (2011)  
– Tetlock (2011) sample period: 1996–2008

• Open question: Are smart traders machines?  

• Broader questions
– Do machines trade against human behavioral biases? 
– Are markets more efficient due to the rise of machines? 
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Structure Challenges 

• Techniques 
– Find an alternative data vendor 
– Work with experts in other fields 

• Economic insights 
– Unstructured data create unique measures of economic activity
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The Future: Understanding Financial Market Ecosystem 

3 Months

13F Data 
Microseconds

High-frequency Traders

Underexplored Territories 

• Paucity of studies on traders who are slower than HFTs but faster than a quarter 
• Execution algorithms who operate at timescales of milliseconds or seconds
• Traders who use machine-learning techniques operate at timescales of “anywhere from a 

few minutes to a few months.”
• Half machine, half human 
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Terminators?  
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Conclusion: Big Data Challenges and Opportunities  

Techniques 
• High-performance computing mitigates the size challenges   
• Machine learning alleviates the high dimensional challenges  
• Alterative data vendors or interdisciplinary collaborations mitigate the structure 

challenges   

Big data opportunities  
• Reduce sample selection bias 
• Machine learning: foundation for “algorithmic behavioral finance”? 

– Psychology: foundation of behavioral finance

• Create unique measures to test theories
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