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Dealer Networks

We study liquidity provision and asset price formation in over-the-counter markets. The MSRB
Transaction Reporting System audit trail shows that the dealership network in municipal bonds
exhibits a hierarchical core-periphery structure with around 20-30 highly interconnected dealers
at its core and several hundred peripheral dealer firms. Market quality varies significantly across
dealers depending on their centrality within the trading network. Central dealers charge larger
trading costs to investors and face lower loss probabilities than peripheral dealers. Yet, more
investor orders flow through central dealers. Central dealers provide more liquidity than peripheral
dealers, leading central dealers to hold larger and more volatile inventories, keep bonds longer,
and intermediate fewer pre-arranged trades. Informational efficiency also increases with centrality,
mitigating adverse selection risk. Dealers experience significant illiquidity spillover from connected
dealers, leading central dealers to hold larger and more volatile inventories on average and to keep
bonds longer than peripheral dealers. Centrality thereby improves dealers’ negotiating position
with investors. This explains why competition is fiercer at the periphery than the core of the
decentralized market. These results demonstrate the trade-offs investors face when trading in over-
the-counter markets, which may guide financial market design.

JEL Classification: G12, G14, G24

Key words: Municipal bond market, over-the-counter financial market, market quality, liquidity
spillover, network analysis



Efficient allocation of resources requires well functioning markets for exchanging financial claims.

Many financial securities, including municipal bonds, are traded through decentralized and opaque

networks of financial intermediaries. In a decentralized dealership market, financial intermediaries

form a network characterized by repeat interactions and long-term relations to facilitate the pro-

vision of liquidity to investors, the sharing of inventory risk, and the flow of information. But

concentration of order flow reduces resilience to shocks and allows central dealers to exploit their

advantage when interacting with investors. As a result, order execution quality and liquidity pro-

vision not only vary across trading venues and time but also depend systematically on dealers’

centrality within the market.

In this paper, we use the Municipal Securities Rulemaking Board’s (MSRB) proprietary Trans-

action Reporting System audit trail to study how market quality varies across the dealerships in

municipal bonds and, in particular, how dealer centrality affects trading costs, liquidity provision,

and price discovery. How well dealership markets perform in terms of market quality is largely an

open question. Existing literature compares market quality across market structures or market-

wide measures over time.1 The impact on market quality of networked trading within a market is

an important and understudied area.

The structure of the financial markets is pivotal for execution quality. When financial markets

are underdeveloped, search and contractual frictions impose punitive transaction costs and hinder

efficient price formation. By reducing transaction costs, financial intermediaries and trading facil-

ities enable better allocation of securities among investors and improve risk sharing. The trading

mechanism also enhances price discovery, or how efficiently new information is incorporated into

prices. Efficient price discovery contributes to better real resource allocation, benefiting issuers and

society at large by improving real investment decisions and increasing welfare.

The municipal bond market is the largest and most important capital market for state and

municipal issuers. Its effective functioning is crucial for the provision of public services and the

1Chowdhry and Nanda (1991) analyze cross-market trading by informed investors. Chordia, Roll, and Subrah-
manyam (2000) and Hasbrouck and Seppi (2001) provide evidence for liquidity commonality across stocks. Hatch
and Johnson (2002) and Comerton-Forde et al. (2010) study time variation in liquidity. Coughenour and Saad
(2004) study liquidity spillovers across NYSE market-makers. Edwards, Harris, and Piwowar (2005) and Bessem-
binder, Maxwell, and Venkataraman (2006) study liquidity externalities and trading costs in corporate bonds. In
recent work, Jovanovic and Menkveld (2010) study the liquidity impact of financial intermediaries’ entry. Cespa and
Foucault (2011) analyze liquidity spillovers across securities.
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welfare of society. Trading of the bonds is organized like a typical decentralized broker-dealer

market with limited pre- and post-trade transparency. More than 700 broker-dealer firms (all of

which are obliged to register with the regulatory body MSRB) are actively trading in municipals

in any given month.

We start by characterizing the bond market’s structure in terms of the network of inter-dealer

trading relations and its evolution and stability over time. We measure dealer centrality by their

direct and indirected connections with other dealers through inter-dealer trading relations. The

centrality measures that we use are borrowed from the literature on network analysis. We then

document how the terms of trade for investors, the provision of liquidity by dealers, and the

efficiency of prices depend on the financial intermediaries’ position within the topology of the

market. This provides insights into the incentives and market forces faced by broker-dealers in

financial markets, the determinants of market quality, and the efficiency of price formation.

Our main empirical findings on the relation between trading costs, inventories, price efficiency,

and dealer centrality are as follows:

1. The dealership network in municipal bonds exhibits a hierarchical core-periphery structure
with around 30 highly connected dealers at its core and several hundred peripheral dealer
firms. There is strong persistence in trading relations between dealers and in dealer ranks.

2. Dealers’ average markups increase with the network centrality of the dealer(s) intermediating
the trades. Central dealers charge significantly larger spreads in the secondary market than
peripheral dealers, amounting up to 80% more for mid-size trades. Dealers’ loss probability
decreases with the network centrality of the dealer.

3. The informational efficiency of transaction prices rises with the centrality of the dealer(s)
intermediating the trade.

4. Dealers experience significant liquidity spillovers from connected dealers. Central dealers
provide more liquidity to customers than peripheral dealers; they trade more often and in
larger aggregate volume. Central dealers also take more inventory risk as measured by daily
inventory changes, inventory durations, and propensity for prearranging trades. Trading
with central dealers reduces the number of inter-dealer transactions needed to complete a
round-trip transaction.

5. Dealers’ bargaining position in trading with customers is stronger for central dealers than for
peripheral dealers.

These findings suggest that competition is fierce at the periphery but not at the core of the

decentralized market because of opacity and search frictions, giving rise to network effects. In
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networked dealership markets, investors face a trade-off between transactions cost and intermedi-

ation service quality (liquidity provision, price efficiency). Concentration of order flow with few

central dealers leads to more efficient aggregation of new information about asset values and yields

economies of scale in transaction processing and risk management—lowering transactions cost. On

the other hand, concentration may reduce financial market stability and resilience to shocks, in-

creasing risk and costs. In addition, dealers will be in a superior position to observe aggregate order

flow and learn about the motives for trade. This will allow them to exploit their informational ad-

vantage when interacting with market participants, yielding them market power and raising trading

costs. As a result, highly connected dealers at the center of the market offer accurate and efficient

prices at a cost. By contrast, dealers on the periphery offer more competitive bid-ask spreads at

the expense of lower liquidity and less informationally efficient prices. We provide support for these

predictions in a proprietary sample of trades in municipal bonds. The results, more generally, shed

light on the trade-offs investors face when trading in over-the-counter markets, which may guide

financial market design.

The remainder of the paper is organized as follows. Section 1 describes the data sources.

Section 2 documents the microstructure of the municipal bond market in terms of the trading

relations between dealer firms. Section 3 documents how execution quality varies across dealers.

Section 4 explores the relation between order flow, dealer inventory behavior, and dealer centrality.

In Section 5, we provide evidence that networked trading allows dealers to charge discretionary

markups. Section 6 concludes.
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1 Institutional Background and Data

The municipal bond market is the largest and most important capital market for state and mu-

nicipal issuers. It is a typical decentralized broker-dealer market with limited pre- and post-trade

transparency. All trades are intermediated by broker-dealers who are registered with the Municipal

Securities Rulemaking Board (MSRB). The MSRB is the self-regulatory body for the municipal

bond market. Trade execution mostly occurs manually through sequential bilateral negotiations,

by phone or electronic communication (see Biais (1993) and Yin (2005) for theoretical analysis).

More than 700 broker-dealer firms are actively trading in municipal bonds in an average month.

They provide liquidity by prearranging trades between customers or taking bonds into inventory.

Data sources: Our main data source is the proprietary MSRB Transaction Reporting System

audit trail recorded by the MSRB. In an effort to improve market transparency, the MSRB requires

all dealers in municipal debt to register with the MSRB and report all trades conducted in any

municipal security. The data is thus comprehensive. Unlike the publicly available version of histor-

ical municipal bond transactions, our data provides identification of the dealer firms intermediating

customer trades; for inter-dealer trades the data identify the dealers on each side of the trade.2

The transactions data cover the 13 year period between February 1998 and July 2011. In addition

to the complete transactions data, we obtain reference information on all outstanding bonds, in-

cluding issuance date, maturity, coupon, taxable status, ratings, call features, issue size, and issuer

characteristics from the Securities Data Company (SDC) Global Public Finance database.

We filter the transactions data to eliminate data errors and ensure data completeness. For a

bond to be in our sample, we require availability of reference data in SDC and require the bond

to have a fixed coupon. Green, Hollifield, and Schürhoff (2007) and Schultz (2012) document that

trading and liquidity in newly issued bonds are markedly different from seasoned issues. For our

transaction level analysis, we therefore remove all trades during the first 90 days after issuance.

Our final sample consists of approximately 60 million transactions in 1.4 million different bond

issues. The trades are intermediated by a total of 2,078 dealer firms. Out of all transactions, 16

million are trades between dealers and the remainder are trades between investors and dealers.
2The data do not provide identifiers for the dealers’ customers. See Hendershott and Madhavan (2011) for a recent

study employing customer identifiers.
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Network measures for dealer centrality: The bond dealers’ trading relations and relative

positions in the trading network can be described by various network characteristics. There are six

measures of centrality that are widely used in network analysis: degree centrality, k-core, eigenvector

centrality, betweenness, closeness, and cliquishness.

• Degree centrality measures connectivity of a dealer in the network (a local property) by

computing the fraction of dealers in the network to which the dealer firm is directly connected

through bilateral trades (direct neighbors). Derived from degree is the k-core, which measures

centrality as the maximal sub-network in which each dealer has at least degree k.

• Eigenvector centrality measures importance of a dealer in the network (a global property) by

assigning relative scores to all dealers in the network based on the principle that connections

to high-scoring dealers contribute more to the score of the dealer than equal connections to

low-scoring dealers.

• Betweenness measures absolute position by taking into account the connections beyond the

first neighbors (indirect neighbors). Betweenness is computed by counting the number of

shortest paths linking any two dealers in the network that pass through the dealer firm. Like

eigenvector centrality, betweenness captures a dealer’s overall importance.

• Closeness measures influence with respect to centrality by computing the inverse of the average

number of steps that a dealer needs to take within the network to reach or be reached by any

other dealer firm.

• Cliquishness measures local connectivity by computing the likelihood that two associates of a

dealer are associates themselves. The correlation between degree and cliquishness determines

the hierarchical structure of the network.

Table 1 provides a more detailed description of the centrality measures. We aggregate all network

variables to a single index, denoted Net, by taking the first principle component across the measures

as described in Table 1. For robustness, we construct both equal-weighted and value-weighted

centrality measures, where we weight each connection by the order flow between the dealers. Our

results are robust to taking the individual statistics or the aggregate statistic Net.
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[Table 1 about here]

The network properties for each dealer are calculated using all inter-dealer transactions between

February 1998 and July 2011. For every day during our sample period, we compute a directed net-

work based on transactions during the past 30 calendar days. The number of trades between each

pair of dealers and the total par amount of trade between them are recorded for the different weight-

ing schemes. Following Milbourn (2003) and others, we apply an empirical cumulative distribution

function (ecdf) transformation for each network variable to reduce skewness in the variable and

diminish the impact of outliers. The ecdf transformation also facilitates interpretation of the eco-

nomic magnitude of the results. As distribution functions take values between 0 and 1, a change

from 0 to 1 in the network variables corresponds to moving from the least central position to the

most central position across dealers.

Table 2 provides summary statistics for the variables describing the dealers’ network charac-

teristics. We track all 2,078 dealer firms over 3,400 trading days, yielding 2,498,266 dealer-day

observations. On average, 700 to 800 dealers are actively trading in any given month. Table 3

reports the correlation coefficients between the dealers’ network-related characteristics and Net.

Panel A reports correlation coefficients for the equal-weighted centrality measures, and Panel B for

the value-weighted variants. Across columns, we vary between the raw and standardized network

measures. While the various network characteristics measure different aspects of network relations,

there is a sizeable common component. The correlations between the variables and Net are signif-

icantly positive but typically less than unity. Cliquishness cc is the exception, in that it correlates

negatively with most other measures.

[Tables 2 and 3 about here]

2 OTC market structure

In the following, we describe the microstructure of the municipal bond market in terms of the

trading relations between dealer firms. We also provide descriptive statistics on connectedness,

hierarchical structure, and shock resilience in the municipal bond market.
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2.1 Network of inter-dealer trading relations

We first describe the structure of the dealership market by measuring the order flow between dealers.

Some dealers interact frequently, others rarely or never. The strength of a relation between a pair

of dealers can be measured by the number of times or, alternatively, by the number of bonds they

trade with each other. One can also assign a direction to a relation depending on who buys and who

sells. In the following, a dealer firm is identified by its MRSB registration. We pool all transactions

over the sample period. We later study the time-series dynamics of trading relations.

Figure 1 illustrates the network structure of dealers in the municipal bond market in terms

of order flow between dealers. Each node represents a dealer. Each arrow represents directed

order flow between two dealers (we only consider order flows that exceed a minimum of $5,000

in par value). In Panel A, we impose the restriction that order flow between two dealers exceeds

10,000 transactions over the sample period. This allows us to focus on the most connected dealers,

forming the core of the municipal bond market. In Panel B, we plot the dealer network using

all transactions. The plots in Panel A and B are generated using multidimensional scaling. The

figure suggests that the municipal bond market has a hierarchical core-periphery structure. Around

30 dealers are highly connected and trade heavily with other dealers. In contrast, the remaining

several hundred dealer firms are peripheral in that they trade less frequently and with a more

limited number of trading partners.

[Figure 1 about here]

2.2 OTC market connectedness, hierarchy, and resilience

We can use the dealers’ network characteristics introduced in Section 1 to determine systematic

patterns in inter-dealer relations and overall market structure. In a centralized market, each investor

can trade with everybody else, so the market is perfectly connected. In decentralized markets,

investors have preferred dealers and, in turn, dealers trade preferably with their associates. The

question arises whether all dealers trade with each other in the municipal bond market or whether

they form long-term relations, and how do these patterns vary across dealers?
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Figure 2 documents the connectedness of the market. We plot the degree distribution across

dealers in the network. The black dots correspond to the out-degrees, the red dots represent

in-degrees. The dots trace out the inverse distribution function of degrees across dealers. For

comparison, we add the degree distribution of a random trading network (blue dashed line) and

a scale-free trading network (black and red dashed lines). The plot reveals that municipal bond

dealers are much more connected with each other than suggested by random trading (a random

trading network yields a Poisson distribution of degrees). There is a large number of weakly

connected dealers but also a significant number of highly connected dealers—forming the core of

the dealer network. The municipal bond market thus exhibits features of a scale-free network.3

Figure 3 explores a different aspect of the dealer network by documenting the hierarchical

structure of the market. A natural question is whether the municipal bond market has a single

market center (and a periphery of loosely connected dealers) or several local market centers? To

answer this question, we plot the degree distribution across dealers in the network (horizontal axis)

against the clustering coefficient, or cliquishness, of each dealer (vertical axis). The plot reveals

that sparsely connected dealers are part of local markets (highly clustered sub-markets), with order

flow between the different local markets being maintained by a few dealer hubs.4 Figures 2 and 3

combined reveal that the municipal bond market has a hierarchical core-periphery structure.

Concentration of order flow with few dealers leads to more efficient aggregation of new in-

formation about asset values and yields economies of scale in transaction processing and risk

management—lowering transactions cost. On the other hand, concentration may reduce financial

market stability and resilience to shocks, increasing risk and costs. We next explore the market’s

resilience to shocks to the network structure by means of network comparative statics. The type

of shocks we are interested in are defaults by dealers, or market exit.

Figure 4 documents the effect on the network structure of default by individual dealers. Default

is defined here as a situation in which all order flow to and from the dealer disappears, and the

3Scale-free networks are characterized by a power-law degree distribution. The probability that a node has k links
follows Pr(k) ∼ k−γ , where γ is the degree exponent. The probability that a node is highly connected is statistically
more significant than in a random graph. As a result, the network’s properties are often determined by a relatively
small number of highly connected nodes, which are known as hubs. See Erdös and Rényi (1960) and Albert, Réka,
and Barabási (1999).

4Hierarchical modularity yields scaling of the clustering coefficient, which follows cc(k) ∼ 1/k and, hence, traces
out a straight line of slope 1 on a log–log plot. See Ravasz et al. (2002).
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network is otherwise held fixed.5 We borrow this type of comparative statics analysis from the

networks literature (Albert, Jeong, and Barabási (2000)). We plot the relative size of the largest

connected subgraph (the so-called giant component) as a function of the number of dealers that

default. We consider two scenarios. The blue line corresponds to the network connectedness when

dealers default at random. The red line corresponds to the network connectedness when the most

connected dealers default first. In Panel A, the horizontal axis measures the number of defaulted

dealers as a fraction of all dealers. In Panel B, the defaulted dealers are sorted on the horizontal

axis according to their degree. The figure suggests that the municipal bond market is remarkably

robust to random and targeted defaults of dealer firms. The reason is that the market has at its

center several highly connected dealer hubs that can act as substitutes for each other, diversifying

the risk of instability.

[Figures 2, 3 and 4 about here]

2.3 How stable are inter-dealer relations and dealer ranks?

The nature of financial intermediation—standing ready to provide liquidity—leads dealers to inter-

act repeatedly with other dealers. Do such repeat interactions lead to long-term relations between

dealers that benefit themselves and other market participants? Are relations formed and broken

opportunistically when one dealer’s inventory matches the needs of another dealer and gains from

trade exist, or are dealer relations formed strategically? To address these questions, we explore

how stable are relations between dealers over time and what impact this has on the persistence in

dealer ranks.

Table 4 shows the transition probabilities of the individual inter-dealer relationships. Condi-

tional on a directional (that is, buy vs. sell) inter-dealer relation that existed in one month, the

same directional relation exists with 62% probability in the next month. Ignoring trade directions,

the probability that two dealers who traded in one month also trade in the next month is 65%.

5That is, we take the network structure as given and abstract from the market’s endogenous response to dealer
defaults. The descriptive statistics should therefore be interpreted as features of the network rather than economic
responses of the dealers or the market as a whole. By contrast, we would need an exogenous source of variation in
the network structure to measure the economic impact of dealer defaults.
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To put these numbers in perspective, both probabilities are 1.4% in an idealized random network.6

This suggests a high level of persistence in the trading relations between dealers and in the direction

of the order flow.

Table 5 focuses on the persistence in dealer ranks, as measured by the ordering of the dealers’

centrality Net. Dealer ranks are highly persistent from one month to the next. The top 10 dealers

remain at the top of their league with 93% chance. Yet, there is sizeable downside potential. The

chance of losing ranks is on average twice as high as the chance of winning ranks, as captured in the

columns Pr(Up) and Pr(Down). This is consistent with the notion that peripheral, lower ranked

dealers compete aggressively to gain ranks, that is, to become more central.

[Tables 4 and 5 about here]

Having shown that dealers vary substantially in the amount of trading they do with each other,

we now study the link between dealers’ trading relations and (local) market quality.

3 Order execution quality and dealer centrality

Dealers intermediate bonds through round-trip trades. We consider three types of round-trip

trades with varying dealer involvement. The first type of round-trip is the simplest way dealers

intermediate trades. A dealer purchases a bond from a customer and then sells the same bond to

another customer, where the original bond lot is not split into smaller order sizes. That is, there

is only one dealer involved. We call such transactions CDC-Nonsplits, where CDC indicates the

bond went from Customer to Dealer and then to another Customer. There are a total of 3,332,104

CDC-Nonsplit round-trips in our sample.

Alternatively, the dealer purchasing the bond can split the bond lot into smaller sizes and sell

each piece to a different customer. We call such transactions CDC-Splits, as there is still only one

dealer involved. There are a total of 1,236,766 CDC-Split round-trips in our sample, for a total

number of 4,568,870 CDC round-trips.

6In a random network, trade relationships between dealers do not depend on historical relationships. The number
1.4% is based on the number of dealers and the total number of inter-dealer trades in an average month.
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Dealers can, alternatively, involve other dealers in the intermediation by using the inter-dealer

market. Such round-trips start with a dealer purchasing a bond from a customer, followed by one or

several inter-dealer trades that move the bond from the head dealer to the tail dealer, and end with

sale from the tail dealer to a customer. In order to be able to trace the flow of a bond across the

dealers with reasonable certainty, we consider only unsplit round-trips. We allow for a maximum

of 6 dealers in the sequence of trades (there are very few cases involving 7 or more dealers). We

call this type of round-trip C(N)DC-Nonsplit, where (N) indicates that multiple dealers may be

involved. The C(N)DC-Nonsplit sample comprises 3,635,309 round-trips. Among these, 8.3% (or,

a total of 303,205) involve more than one dealer.

Throughout our analysis, we eliminate trades between customers and dealers in which a dealer

acts in the capacity of agent (as opposed to principle). The reason is that dealers acting as agent

are compensated through commission, not markup. Agency trades account for 6% of the sample.

According to this classification, we consider three samples for our empirical analysis. The

baseline sample consists of all CDC-Nonsplit round-trips. For this sample, we are the most certain

that the same dealer handles both the bid- and ask-side trades. The second sample includes all

split orders, comprising all CDC round-trips. This sample is more representative of a typical trade

but may add some noise when split orders are wrongly assigned to be part of the same round-trip.

The last sample are the C(N)DC-Nonsplit trades which include all round-lot transactions flowing

through the dealership network.

3.1 Trading costs and dealer centrality

We can now relate order execution costs to trade types and dealer centrality. We measure trading

costs by the markup on round-trip transactions charged by dealers. The dealers’ markups are

computed as the difference between the par-weighted average price at which they sold the bonds

to customers and the price at which they purchased the bonds, scaled by the purchase price.

Table 6 and Figure 5 report descriptive statistics for dealer markups on round-trip transactions

across trade categories. Markups are measured in percent of the dealer’s original purchase price

from customer. In reporting these numbers, we apply no data filters. For the regression analysis
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performed later, we winsorize the round-trip costs at 0.5% and 99.5%. Average round-trip trading

costs on non-splits are 1.77% (1.66% at median), while dealers earn an average of 2.00% (2.01%

at median) on split round-trips. Round-trip costs vary widely across transactions within category,

from about 0.73% at the lower quartile to 2.75% at the upper quartile of the distribution for

CDC round-trips. Average markups decline monotonically with transaction size, as illustrated by

Panel A of Figure 5 (see Green, Hollifield, and Schürhoff (2007) and Harris and Piwowar (2006)).

Panel B of Table 6 shows that average markups increase monotonically with the number of dealers

intermediating the trade. The total markup for round-trips involving six dealers peaks at 4.19%.

This trading cost is roughly equal to the annual coupon payment on an average bond.

[Table 6 and Figure 5 about here]

Total round-trip costs when more than one dealer is involved reveal another feature. Panel

B of Table 6 reports descriptive statistics for dealer markups on round-trip transactions with

varying number of dealers involved. CDC are customer-dealer-customer transactions without inter-

dealer trading. CDDC, CDDDC, CDDDDC, CDDDDDC and CDDDDDDC are round-trip pairs

intermediated by two, three, four, five and, respectively, six dealers. We restrict the sample to non-

splits, yielding 3,635,309 observations. Markups are again measured in percentage of the dealer’s

purchase price from customer. Trading costs rise with the degree of dealer involvement. Average

round-trip costs are 1.77% when one dealer handles the bond lot. This number rises to 4.19% when

six dealers intermediate before the bond reaches a customer. In the extreme, transactions involving

more than four dealers exceed 7% costs in more than 5% of cases.

Having documented that total trading costs rise with the number of dealers involved, the natural

question is how much does each dealer in the chain of intermediaries earn? This allows examining

how the total surplus from financial intermediation is split among dealers. In particular, does the

first, middle, or last dealer earn more than the remaining dealers?

Table 7 reports average markups per dealer on round-trip transactions with varying degree

of dealer involvement. Total dealer markups are broken down by the number of dealers (across

rows) and by each dealer (across columns) in the sequence of dealers intermediating the round-trip

transaction. We restrict the sample to non-splits. We find that the dealer closest to the ultimate

buyer earns the largest share of the overall profits, irrespective of how many dealers are involved.
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[Table 7 about here]

Dealer markups on round-trip transactions vary substantially across trades, as documented in

Table 6. Are they systematically related to the centrality of the dealer intermediating the trade?

Figure 5, Panel B documents average trading costs across dealers for all CDC-Nonsplit trans-

actions. Central dealers charge larger average trading costs than peripheral dealers across all trade

sizes. Average bid-ask spreads differ by up to 80%. For medium-sized trades, bid-ask spreads at

central dealers are 40% higher than the average, while they are 40% lower than the average at

peripheral dealers. For small and large trades, the difference is smaller but still positive.

Table 8 documents using multivariate regressions how total round-trip trading costs depend on

the network position of the intermediating dealer. Across columns, we vary the centrality measure

and, respectively, the trade categories. In columns (1)-(4), the dealer centrality measure Net is

defined as the first principle component of the equal-weighted centrality proxies. In columns (5)-(8),

the dealer centrality measure Net is defined as the first principle component of the value-weighted

centrality proxies. The regression samples are CDC-Nonsplit, All CDC, and C(N)DC-Nonsplit,

respectively. The estimates are obtained from panel regressions with issuer fixed effects. Standard

errors are adjusted for heteroskedasticity and clustering.

The estimates reveal that trading costs are positively related to dealer centrality and other

measures of connectedness of dealers. Highly connected dealers, due to their central network

position, are able to charge larger markups to investors than peripheral dealers. Being connected

to a central dealer may offer advantages to investors in need of selling a bond. Yet, central dealers

are in a better position to charge large spreads than peripheral dealers. Last, the C(N)DC-Nonsplit

sample reveals that dealers’ total profits are more sensitive to the network centrality of the tail dealer

than to the head dealer.

[Table 8 about here]

3.2 Intermediation risk and dealer centrality

Central dealers charge larger markups than peripheral dealers, as documented in Figure 5 and

Table 8. Are central dealers, in turn, taking on more risk? We next ask how variable are central
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dealers’ profits relative to those of peripheral dealers? The natural way to examine this is by looking

at the probability of taking a trading loss on a round-trip transaction.

Table 9 documents the determinants of trading losses. In each of our three round-trip samples,

dealers lose money in less than 2% of the round-trips. Still, the loss probability depends strongly

on the dealers’ relative position in the network, on bond characteristics, and other explanatory

variables. We use a panel probit model with issuer fixed effects to estimate the determinants of

dealers’ losses. In each of the three samples, central dealers are less likely to lose on round-trips

than peripheral dealers. Thus, the profits of connected dealers are larger on average and less risky.

[Table 9 about here]

3.3 Price efficiency across the dealer network

While Table 9 reveals that central dealers incur smaller trading losses ex post, it could be that

they widen spreads to mitigate adverse selection risk from investors with superior information

or processing skill. On the other hand, highly connected dealers, due to their central network

position, observe a larger fraction of a bond’s aggregate order flow and order flow in more bonds

than peripheral dealers. Central dealers can therefore better filter liquidity motives for trade and

aggregate fundamental information than dealers with little exposure to aggregate order flow. As a

result, one would expect that bond prices are more efficient at central dealers.

To determine informational price efficiency, we adopt the Hasbrouck (1993) and Hotchkiss and

Ronen (2002) settings and adjust their market quality measures to our setting with decentralized,

infrequent trading. Hasbrouck’s local trend model in which price movements are decomposed into

permanent and transitory components provides a parametric estimate for market quality, MQ.

Market quality is highest when prices are martingales so that price changes are uncorrelated. Au-

tocorrelation in returns can therefore be viewed as a proxy for market quality. In Hasbrouck’s

parametric model, market quality is captured by the first-order lag in autocorrelation. In decen-

tralized markets with infrequent trading, however, market imperfections can affect price dynamics

beyond the first lag. We therefore construct a non-parametric market quality measure that is robust

to return autocorrelation with an unspecified structure.
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Time-series variation in returns can be decomposed into permanent and transitory components

by quantifying predictable and, respectively, unpredictable variation. The standard estimator for

return variance ignores autocorrelation in returns and measures total price variation:

σ20 =
1

N

N∑
n=1

(∆pn)2, (1)

where N is the number of trading days in a given bond. In contrast to the standard estimator, the

Newey and West (1987) HAC estimator for variance is robust to autocorrelated disturbances with

an unspecified structure. A robust estimator for return variance captures the predictable variation

through return autocorrelation up to lag L ≥ 1:

σ2L =

L∑
l=−L

wls
2
l , (2)

where wl ∈ (0, 1] is a weight with
∑L

l=−Lwl = 1 (wl = 1 − l/(L + 1) in Newey and West (1987))

and the autocovariance of lag l is defined as s2l = 1
N−|l|

∑N
n=1+|l|(∆pn∆pn−|l|).

The difference between the standard and the robust estimator of return variance provides a

non-parametric estimate of market quality by quantifying the autocorrelation in returns for any

L ≥ 1. Information efficiency can therefore be measured by

MQL = 1− |1− σ2L/σ20|. (3)

MQL = 1 corresponds to a situation in which all return movements are permanent, so that σ2L = σ20.

The market is then considered perfectly informationally efficient. MQL = 0 corresponds to a

situation in which all return movements are transitory and eventually reversed, so that σ2L = 0. The

absolute value controls for the fact that returns may exhibit positive serial correlation (MQL = 0

also when all return movements are perfectly serially correlated, so that σ2L = 2σ20). The market

quality measure MQ1 (that is, L = 1) corresponds to the model in Hasbrouck (1993) and Hotchkiss

and Ronen (2002), where autocorrelation in returns is measured up to the first lag.

In our empirical specification, we compute four alternative MQL measures. We set L = 1 to be

in line with the prior literature and use either transaction-by-transaction data or daily midpoint
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data. Alternatively, we set L = 10 (around T
1
4 as stipulated by Newey and West (1987)). The

specifications with L = 10 capture general return autocorrelation patterns.

Table 10 documents the link between the informational efficiency of bond prices and dealer

centrality. Information inefficiency is measured byMQL with L = 1 (columns 1-4) and, respectively,

L = 10 (columns 5-8). MQL is calculated separately for each bond and then aggregated at the

dealer level. Across columns, we vary the construction of the market quality measure MQL and the

network centrality measure Net. MQL is computed either based on daily midpoint or trade-by-trade

price changes. In the EW columns, the dealer centrality measure Net is defined as the first principle

component of the equal-weighted centrality proxies. In the VW columns, the dealer centrality

measure Net is defined as the first principle component of the value-weighted centrality proxies. The

estimates are obtained from OLS regressions with year fixed effects. Standard errors are adjusted

for heteroskedasticity and clustering at dealer level. We find consistently across specifications that

prices are more efficient at central dealers. Central dealers thus seem to be better informed than

peripheral dealers.

[Table 10 about here]

4 Liquidity provision across the dealer network

Bond dealers provide liquidity in two ways, by prearranging trades between customers (similar

to a limit order) or taking bonds into inventory (similar to a market order). Highly connected

dealers, due to their central network position, are better able to spread inventory risk across their

neighbors than peripheral dealers. They can provide liquidity more efficiently to investors and

afford greater inventory risk. We would therefore expect that central dealers hold larger and more

volatile inventory, have longer inventory durations, and exhibit a lower propensity to prearrange

trades than peripheral dealers. We now explore the relation between order flow volume, dealer

inventory behavior, and dealer centrality.

Table 11 reports how aggregate order flow varies across the dealer network. We measure the

dealers’ order flow by the daily number of trades that a dealer conducts (columns 1 and 3) and,

alternatively, by the dollar volume traded (columns 2 and 4). Across columns, we again vary the
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definition for the network measures between equal- and value-weighted cross-sectional averages.

Central dealers trade more often and overall larger volume than peripheral dealers.

[Table 11 about here]

4.1 Inventory risk taking

We now turn to dealers’ inventory risk taking behavior. Dealers’ inventories are computed sepa-

rately for each bond using all trades in bonds that occurs at least 90 days after the original sale

date from the underwriter. We use two measures for inventory changes, absolute daily inventory

changes in $K and, alternatively, percentage absolute daily inventory changes in %. We define

percentage absolute daily inventory changes as |∆invt/ 1
30

∑30
i=1 invt−i|.

Table 12, Panel A provides summary statistics for the dealers’ inventory variables that we

employ. Panel B documents the determinants of the variability in dealers’ inventory. The sample

consists of all dealer inventories in each bond issue on each day during the sample period. The

estimates are obtained from panel regressions with issuer fixed effects. Standard errors are adjusted

for heteroskedasticity and clustering. As one may expect, central dealers have more variability in

their inventories than peripheral dealers, both in absolute and relative terms.

Table 13 explores the link between inventory durations and dealer centrality. Columns (1) and

(2) in the table document the determinants for the duration of time that a bond (which is part of

a round-trip transaction) spends in a dealer’s inventory. We measure a bond’s inventory duration

by the number of days it takes for a dealer to find one or several customers to take the inventory.

When bond lots are split, we compute a bond’s inventory duration as the average number of days,

weighted by the size of the split orders, that it takes to resell the entire bond lot. Inventory times

exceeding 30 days are truncated. The sample consists of all CDC transactions. The estimates

are obtained from panel regressions with issuer fixed effects. Standard errors are adjusted for

heteroskedasticity and clustering. We find that central dealers hold bonds longer in inventory than

peripheral dealers.

Central dealers can have longer inventory durations partly because they are less reluctant to

take on inventory than peripheral dealers. To check whether this is the case we focus on prearranged
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trades, which are similar to limit orders in equity markets. In a prearranged trade, an investor

indicates trading interest to the dealer. The dealer then searches for a counterparty. Only once

two trading parties are found or likely to be found, the dealer takes the bond off the seller’s hand.

In this case, the dealer provides intermediation services without committing capital.

Columns (3) through (6) in Table 13 relate the propensity of prearranged trades to the centrality

of the intermediating dealer. We identify prearranged trades in the data by the time stamps

associated with the two legs of a round-trip. The columns entitled Pr(Immediate Match) identify

prearranged trades as round-trip trades with same time stamp on the buy and sell trade. The

columns entitled Pr(Same Day Match) only require that the buy and sell trade occur on the same

calendar day. We estimate the model assuming the errors are normally distributed (probit). We find

that central dealers are significantly less likely to intermediate prearranged trades than peripheral

dealers, suggesting central dealers supply more liquidity than peripheral dealers.

[Tables 12 and 13 about here]

4.2 Order flow routing

Table 14 reports the average network centrality of each dealer in the intermediation chain for

C(N)DC-Nonsplit trades. We again measure dealer centrality by the first principle component of

all equal-weighted network variables in Table 1, normalized by the ecdf transformation. As one

would expect, inter-dealer trading occurs systematically through the assistance of central dealers.

Consistently across rows, the dealers in the middle have more central network positions than either

the dealer purchasing the bond from a customer or the dealer ultimately selling the bond to a

customer. Dealer centrality peaks with the second dealer for all types of C(N)DC-Nonsplit trades.

Dealers at the end of the chain, the “tail” dealers, have higher levels of centrality than dealers at

the beginning of the chain, the “head” dealers.

[Table 14 about here]

How does the complexity of dealer intermediation, as measured by the number of dealers in the

sequence of trades, depend on the network centrality of the first dealer and last dealer (“head” and

“tail”) in the trade sequence?
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We explore this question in two ways. First, if we fix the identity of the head and tail dealers, we

can calculate the frequency with which one through five inter-dealer trades happen between these

dealers. Table 15, Panel A shows the summary statistics of the frequencies. In the overall sample,

two dealers are connected through one inter-dealer trade with probability 44.8%, two inter-dealer

trades with probability 45.4%, conditional on two dealers being connected in the sample. For dealer

pairs that interact more often (at least 10 trades during the sample period), the probability that

they are connected by only one inter-dealer trade is 52.6%.

Second, we can look at all sequences of dealer trades and regress the number of dealers in

the round-trip on the centrality of the head and tail dealers. Columns (1) and (2) in Panel B of

Table 15 include sequences of trades that have at least one dealer, and columns (3) and (4) require

the round-trip to have at least two dealers (i.e., head and tail). The complexity of intermediation

is negatively related to the centrality of both the head dealer and the tail dealer.

[Table 15 about here]

4.3 Liquidity spillover

The question remaining is why central dealers take on more inventory risk? One explanation is

that inventory risk sharing with connected dealers reduces inventory costs. If this is the case, we

would expect to observe positive inventory spillovers across dealers.

Table 16 documents spillover effects in dealer inventories from connected dealers. The model

we consider for the inventory decision yi of dealer i is:

yi = α+ λ
∑
j 6=i

wijyj + β′Xi + εi, (4)

where wij equals the connection strength between dealers i and j, and Xi is a set of explanatory

variables. The coefficient λ measures inventory spillovers across dealers. The dependent variables

are constructed as average values over the sample period. The model is estimated using maximum

likelihood (estimates from GMM/IV are similar and omitted). The estimate for λ is significantly

positive in all specifications, suggesting strong positive inventory spillover effects. Large dealer
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inventories (levels, changes, and volatilities) cause connected dealers to increase their own invento-

ries.

[Table 16 about here]

5 Strategic dealer pricing

The natural question deriving from the previous sections is why can central dealers charge larger

and less variable spreads than peripheral dealers? One hypothesis is that the dealers’ network

position allows them to exploit centrality in bargaining with customers. To explore this hypothesis,

we adapt the framework for intermediation in dealership markets developed in Green, Hollifield,

and Schürhoff (GHS, 2007) to our network setting. When customers and dealers negotiate over the

surplus from trade, the equilibrium markup on transaction i is determined as follows:

Markupi = α+ βNeti + γ′Xi + εi + ui, (5)

where Neti denotes the network centrality of the dealer intermediating trade i, Xi is a set of

explanatory variables, εi is a normally distributed variable, and ui ≥ 0 is a one-sided error drawn

from an exponential distribution with parameter λi = exp(αλ + βλNeti + γ′λZi), where the Zi

denote a set of conditioning variables. We also allow the standard deviation of εi to be log-linear

in Neti and the conditioning variables Zi: σi = exp(ασ + βσNeti + γ′σZi).

In this model, markups can rise with dealer centrality for two reasons. Physical intermediation

costs affect markups deterministically by alternating the intercept term in a stochastic frontier

regression (captured by β). A dealer’s bargaining position, by contrast, has a stochastic effect on

markups. Better bargaining raises the mean of the one-sided random component in markups (cap-

tured by βλ). This stochastic frontier model for dealers’ round-trip markups can be estimated using

maximum likelihood. The estimated parameters for the one-sided component can be interpreted

as a measure for dealers’ bargaining power.

Table 17 shows the estimation results for the stochastic frontier model. Across columns, we

again vary the definitions of the network variables and the estimation sample. The estimates for
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the intermediation cost function in Panel A suggest that the dealers’ intermediation cost rise with

centrality, presumably because they keep larger inventory positions and have longer inventory du-

rations. The estimates for the determinants of dealer bargaining power (one-sided error component

variance) reveal that dealers’ bargaining power is positively related to centrality. This is true for all

centrality measures and data samples, with the exception of the C(N)DC-Nonsplit sample which

includes round-trips involving more than one dealer. This evidence suggests the profits of highly

connected dealers are large on average and little variable, because their central market position

improves their bargaining position with customers.

[Table 17 about here]

6 Conclusion

The structure of the financial markets is an important determinant of trading costs, liquidity,

and price discovery. Many financial securities, including municipal bonds, are traded through

decentralized and opaque networks of financial intermediaries. The dealership network facilitates

the sharing of inventory risk and the flow of information, but the concentration of order flow reduces

resilience to shocks and allows central dealers to exploit their advantage when interacting with

investors. We provide evidence for these tradeoffs in a comprehensive sample of trades in municipal

bonds. We find that the dealership network exhibits a hierarchical core-periphery structure with

around 30 highly interconnected dealers at its core and several hundred peripheral dealer firms.

There is strong persistence in dealers’ trading relations and in dealer ranks. Dealers’ average

markups increase with their network centrality. Central dealers charge up to 80% larger spreads

than peripheral dealers, while facing a smaller probability of a trading loss. The informational

efficiency of transaction prices rises with the centrality of the intermediating dealer. Dealers are

exposed to significant liquidity spillovers from connected dealers. Central dealers provide more

liquidity to customers than peripheral dealers; they trade more often and in larger aggregate volume.

Central dealers also take more inventory risk. Dealers’ bargaining position in trading with customers

is stronger for central dealers than for peripheral dealers. These findings suggest that competition

is fierce at the periphery but not at the core of the decentralized market because of opacity, search
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frictions, and network effects. Our results, more generally, shed light on the trade-offs investors

face when trading in over-the-counter markets, which may guide financial market design.
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A Explanatory variables

Bond characteristics: Credit quality dummy variables for A and B rated bonds. Maturity natural

logarithm of the time until the bond matures Age natural logarithm of the time since the bond was

issued Issue size natural logarithm of the bonds issue size bond Industry sector dummy variables

for whether the bond issuer is in the financial, indus-trial, or utility sectors. Market conditions:

Risk term: DTS the yield spread over treasury times years to maturity. Drift term: change

in treasury yield relative to benchmark trade buy-sell indicator years to maturity; the controls

changes in price due to treasury rate shifts. Calendar Time Controls beginning and ending of

week dummy, 1 for Friday and Mon-day, 0 otherwise; month end dummy, 1 for last trading day of

the month, 0 otherwise. Trade characteristics: Trade size: Micro, Odd, Round, and Max dummy

variables for trades of less than 100,000, 100,000 to 999,999, 1M to less than 5M, and 5M and

above, respectively. MA dummy equal to 1 if the trade is on MarketAxess and 0 otherwise. MA

Micro, MA Odd, MA Round, MA Max MA dummy variable interacted with trade size dummy

variables.

Like in vertical differentiation models (Mussa and Rosen, 1978), all investors prefer more liquid-

ity (i.e., the product of the highest quality) but differ in their willingness to pay for liquidity. This

is captured by the parameter θ characterizing an investor’s preferences and thus his willingness to

pay for liquidity. Vertical product differentiation under price competition

Cohen-Cole, Ethan, Andrei A. Kirilenko, and Eleonora Patacchini, 2012, “How Your Counter-

party Matters: Using Transaction Networks to Explain Returns in CCP Marketplaces,” Working

Paper, University of Maryland.
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Table 1: Description of dealer centrality measures

Variable Description

Degree dg A measure of the local connectivity of a dealer. The degree of a dealer is computed
as the sum of all direct relations that a dealer has with other dealers in the network,
divided by the total number of dealers in the network. Degree captures the order
flow and information to which a dealer is exposed, because it measures the fraction of
dealers to which the dealer firm is connected. For directed graphs, one can calculate in-
degree dgin and, respectively, out-degree dgout. For weighted graphs, one can calculate
weighted variants:

dgoutwntrade = Out-degree, weighted by number of trades.
dginwntrade = In-degree, weighted by number of trades.
dgoutwpar = Out-degree, weighted by total par amount.
dginwpar = In-degree, weighted by total par amount.

Eigenvector centrality ev A measure of the overall importance of a dealer firm in the network. It assigns relative
scores to all dealers in the network based on the principle that connections to high-
scoring dealers contribute more to the score of the dealer firm than equal connections
to low-scoring dealers. For weighted graphs, one can calculate weighted variants:

evwntrade = Eigenvector centrality, weighted by number of trades.
evwpar = Eigenvector centrality, weighted by total par amount.

Betweenness bt A measure of the absolute position of a dealer in the network. The betweenness of a
dealer is computed as the number of shortest paths linking two dealers in the network
that pass through the dealer firm. Betweenness measures the connections beyond
the first neighbors, and it takes into account the connections of the neighbors and
the neighbors’ neighbors. A dealer with a high degree of betweenness is in a critical
position where a large flux of order flow and information pass through; they are called
“hubs.” We use the directed graph version of betweenness.

Closeness cl A measure of influence with respect to centrality, rather than information or order
flow. The closeness of a dealer is computed as the inverse of the average number of
steps that a dealer needs to take within the network to reach or be reached by any
other dealer firm. It captures the connection to highly influential dealers. For directed
graphs, clout measures out-links only; clin measures in-links only.

K-core kcore The maximal sub-network in which each dealer has at least degree k. For directed
graphs, one differentiates between kcoreout and kcorein, the largest k-cores the dealer
belongs to, counting only out-links or in-links.

Cliquishness cc A measure of the likelihood that two associates of a dealer are associates themselves.
A higher value indicates a greater cliquishness. cc is also called clustering coefficient
or transitivity.

Net Aggregate centrality measure of a dealer, computed as the first principle component
of the above individual centrality measures and either equal- or value-weighted:

Net (EW) = First principle component of equal-weighted network measures dgout,
dgin, kcoreout, kcorein, bt, clout, clin, ev (cc is dropped since it requires at least two
neighbors,reducing the number of observations).

Net (VW) = First principle component of value-weighted network measures
dgoutwntrade, dginwntrade, dgoutwpar, dginwpar, evwntrade, evwpar.

27



Table 2: Summary statistics of dealer centrality measures

The table reports the descriptive statistics for the dealer centrality measures in the pooled dealer-day sample. In
Panel A, we summarize the equal-weighted centrality measures. In Panel B, we summarize the order flow value-
weighted measures. The number of observations for the clustering coefficient cc is 1,639,422. For all other variables,
the number of observations is 2,498,266.

Mean S.D. Min. Max.

Panel A: Equal-weighted centrality measures
Net (EW) 0.000 2.248 -1.721 18.868
dgout 0.014 0.033 0.000 0.338
dgin 0.014 0.027 0.000 0.272
ev 0.099 0.173 0.000 1.000
bt 0.002 0.007 0.000 0.169
clout 0.008 0.005 0.001 0.022
clin 0.005 0.002 0.001 0.014
kcoreout 4.812 7.178 0.000 31.000
kcorein 6.049 7.573 0.000 33.000
cc 0.505 0.289 0.000 1.000

Panel B: Value-weighted centrality measures
Net (VW) 0.000 2.107 -0.445 60.536
dgoutwntrade 0.110 0.659 0.000 34.073
dginwntrade 0.110 0.621 0.000 31.515
dgoutwpar 17.62 93.786 0.000 4164.433
dginwpar 17.62 87.021 0.000 3061.083
evwntrade 0.011 0.066 0.000 1.000
evwpar 0.014 0.074 0.000 1.000
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Table 3: Correlation matrix of dealer centrality measures

The table reports the correlations between the aggregate centrality measureNet and the individual centrality measures
in the pooled dealer-day sample. The first set of columns report correlations between the raw measures. The second
set of columns report correlations between the measures after standardization by the ecdf transformation. Across
columns, Net (EW) is the equal-weighted aggregate centrality measure, and Net (VW) is the order flow value-
weighted aggregate centrality measure. In Panel A, we summarize the equal-weighted centrality measures. In Panel
B, we summarize the order flow value-weighted measures. The number of observations for the clustering coefficient
cc is 1,639,422. For all other variables, the number of observations is 2,498,266.

Raw centrality measures Standardized centrality measures

Net (EW) Net (VW) Net (EW) Net (VW)

Panel A: Equal-weighted centrality measures
Net (EW) 1.00 0.62 1.00 0.89
dgout 0.95 0.69 0.90 0.80
dgin 0.96 0.65 0.85 0.78
ev 0.98 0.64 0.94 0.89
bt 0.74 0.54 0.86 0.78
clout 0.29 0.10 0.70 0.69
clin 0.11 0.03 0.14 0.24
kcoreout 0.88 0.43 0.90 0.80
kcorein 0.84 0.38 0.85 0.78
cc -0.26 -0.17 -0.25 -0.22

Panel B: Value-weighted centrality measures
Net (VW) 0.62 1.00 0.89 1.00
dgoutwntrade 0.57 0.89 0.87 0.86
dginwntrade 0.57 0.84 0.84 0.85
dgoutwpar 0.58 0.90 0.83 0.87
dginwpar 0.62 0.93 0.81 0.90
evwntrade 0.53 0.73 0.85 0.90
evwpar 0.57 0.85 0.82 0.92
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Table 4: Stability in inter-dealer relations

The table reports the transition probability matrix for dealer relations from one month to the next. The transition
matrix is calculated separately for unconditional relations between dealers and relations conditional on the direction
of the order flow. The row headings indicate if a pair of dealers traded with each other in a given month or did not.
The column headings indicate if the same trade relation persists in the next month.

Order flow Order flow in same
next month direction next month

Order flow this month = 0 > 0 = 0 > 0

= 0 85.11% 14.89% 85.90% 14.10%
> 0 34.72% 65.28% 37.58% 62.42%

Table 5: Persistence in dealer ranks

The table documents the persistence on dealer ranks across time. We report the transition matrix of dealer rank
categories from one month to the next. Dealer ranks are measured by the ordering of their centrality measure Net.
To compute the dealer rank in a given month, we use all inter-dealer trades during the past 30 trading days.

Rank month t+ 1

Top 10 11-20 21-50 51-100 101-200 >200 Pr(Up) Pr(Down)

R
a
n
k

m
o
n
th
t Top 10 0.93 0.07 0.00 0.00 0.00 0.00 0.00 0.07

11-20 0.07 0.78 0.14 0.00 0.00 0.00 0.07 0.15
21-50 0.00 0.05 0.81 0.14 0.00 0.00 0.05 0.14
51-100 0.00 0.00 0.08 0.79 0.13 0.00 0.08 0.13
101-200 0.00 0.00 0.00 0.06 0.79 0.15 0.06 0.15
>200 0.00 0.00 0.00 0.00 0.03 0.97 0.03 0.00
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Table 6: Dealer markups on round-trip transactions

The table reports descriptive statistics for dealer markups on round-trip transactions of different types of trades.
Agency trades in which dealers act as customers’ agent instead of principle are eliminated. We first restrict the
sample to round-trips with no inter-dealer trading. We call this data set the CDC sample. We then look at round-
trips that involve no more than 6 dealers with no order splitting. We call this data set the C(N)DC-Nonsplit sample.
All markups are measured in percentage of the (first) dealer’s purchase price from customer.

Obs Mean S.D. Skew Kurt. 5% 25% 50% 75% 95%

Panel A: Round-trips without inter-dealer trading
All CDC 4,568,870 1.833 1.398 5.153 762.355 0.075 0.728 1.767 2.749 4.086
CDC-Nonsplit 3,332,104 1.769 1.387 4.943 686.578 0.065 0.647 1.659 2.668 4.061
CDC-Split 1,236,766 2.003 1.415 5.819 978.614 0.104 0.979 2.005 2.897 4.155

Panel B: Round-trips without order splitting
All C(N)DC-Nonsplit 3,635,309 1.809 1.463 5.423 596.156 0.073 0.677 1.682 2.705 4.156
CDC-Nonsplit 3,332,104 1.769 1.387 4.943 686.578 0.065 0.647 1.659 2.668 4.061
CDDC-Nonsplit 165,506 1.896 1.666 5.602 285.597 0.152 0.755 1.601 2.714 4.603
CDDDC-Nonsplit 123,808 2.601 2.279 5.430 234.937 0.297 1.175 2.214 3.565 6.190
CDDDDC-Nonsplit 12,011 3.242 2.997 5.567 83.708 0.487 1.561 2.727 4.153 7.636
CDDDDDC-Nonsplit 1,721 3.408 5.061 8.776 164.380 0.099 1.244 2.522 4.403 9.524
CDDDDDDC-Nonsplit 159 4.194 5.335 4.669 30.986 0.410 1.797 2.824 4.700 11.547
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Table 7: How do dealers split markups?

The table reports average markups per dealer on round-trip transactions with varying degree of dealer involvement.
Total dealer markups are broken down by the number of dealers (across rows) and by each dealer (across columns)
in the sequence of dealers intermediating the round-trip transaction. We restrict the sample to non-splits. Markups
are measured in percentage of the first dealer’s purchase price from customer. No additional data filters are applied.

Total markup Dealer #1 Dealer #2 Dealer #3 Dealer #4 Dealer #5 Dealer #6

CDC 1.769 1.769 . . . . .
(100%)

CDDC 1.896 0.752 1.144 . . . .
(40%) (60%)

CDDDC 2.601 0.654 0.652 1.295 . . .
(25%) (25%) (50%)

CDDDDC 3.242 0.606 0.532 0.857 1.247 . .
(19%) (16%) (26%) (38%)

CDDDDDC 3.408 0.603 0.362 0.861 0.425 1.158 .
(18%) (11%) (25%) (12%) (34%)

CDDDDDDC 4.194 0.545 0.463 0.820 0.706 0.511 0.511
(13%) (11%) (20%) (17%) (12%) (12%)
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Table 8: Round-trip trading costs and dealer centrality
The table reports the determinants of round-trip trading costs. We vary the regression sample across columns,
considering three types of trades with varying dealer involvement. CDC-Nonsplits are round-trips intermediated by
a single dealer where the original bond lot is not split. The All CDC sample includes all round-trips intermediated
by a single dealer. C(N)DC-Nonsplit are round-trips intermediated by one or several dealers where the original
bond lot is not split. The dealer centrality measure Net is the first principal component of the network variables in
Table 1. The EW (VW) columns employ the equal-weighted (value-weighted) dealer centrality measures. For the
C(N)DC-Nonsplit sample, Net is defined as the head or, alternatively, the tail dealer’s centrality (indicated in the
column header). The estimates are obtained from panel regressions with issuer fixed effects. Standard errors are
adjusted for heteroskedasticity and clustering.

(1) (2) (3) (4) (5) (6) (7) (8)
All C(N)DC-Nonsplit

CDC-Nonsplit All CDC Head Dealer Tail Dealer

EW VW EW VW EW VW EW VW

Net 0.62*** 0.54*** 0.95*** 0.87*** 0.14*** 0.15*** 0.33*** 0.22***
(30.63) (25.82) (37.88) (33.87) (9.66) (8.85) (18.99) (12.32)

logpar retail -0.42*** -0.42*** -0.29*** -0.29*** -0.42*** -0.42*** -0.42*** -0.42***
(-177.78) (-177.52) (-116.02) (-115.80) (-176.25) (-176.27) (-176.60) (-176.47)

logpar medsize -0.44*** -0.44*** -0.30*** -0.30*** -0.44*** -0.44*** -0.44*** -0.44***
(-244.30) (-244.39) (-148.85) (-148.76) (-244.08) (-243.80) (-243.70) (-243.88)

logpar lgsize -0.37*** -0.37*** -0.29*** -0.29*** -0.37*** -0.37*** -0.37*** -0.37***
(-219.68) (-222.28) (-199.34) (-202.15) (-226.10) (-227.02) (-225.03) (-226.82)

isgo -0.03* -0.03* -0.04* -0.04* -0.04** -0.04** -0.04** -0.04**
(-1.90) (-1.88) (-1.90) (-1.89) (-1.99) (-1.99) (-2.00) (-1.99)

taxable 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(0.29) (0.35) (0.54) (0.62) (0.39) (0.42) (0.46) (0.45)

amt 0.21*** 0.21*** 0.24*** 0.23*** 0.21*** 0.21*** 0.21*** 0.21***
(10.99) (10.96) (10.84) (10.79) (11.18) (11.18) (11.21) (11.19)

Rating 0.00** 0.00** 0.00 0.00 0.00** 0.00*** 0.00*** 0.00***
(2.15) (2.18) (1.46) (1.57) (2.56) (2.63) (2.84) (2.74)

logamt 0.14*** 0.14*** 0.17*** 0.17*** 0.14*** 0.14*** 0.14*** 0.14***
(45.85) (45.69) (48.45) (48.23) (45.80) (45.76) (45.85) (45.77)

callable 0.32*** 0.32*** 0.40*** 0.40*** 0.33*** 0.33*** 0.33*** 0.33***
(31.36) (31.35) (33.14) (33.13) (32.09) (32.09) (32.09) (32.10)

cons 2.00*** 2.08*** 1.30*** 1.37*** 2.49*** 2.47*** 2.30*** 2.41***
(80.62) (82.41) (43.04) (45.07) (122.23) (110.14) (102.96) (106.68)

N 2,933,867 2,933,867 4,023,515 4,023,515 3,184,913 3,184,913 3,186,180 3,186,180
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Table 9: Loss probability and dealer centrality
The table reports the determinants for the probability that dealers take a loss on a round-trip transaction. We
vary the regression sample across columns, considering three types of trades with varying dealer involvement. CDC-
Nonsplits are round-trips intermediated by a single dealer where the original bond lot is not split. The All CDC
sample includes all round-trips intermediated by a single dealer. C(N)DC-Nonsplit are round-trips intermediated by
one or several dealers where the original bond lot is not split. The dealer centrality measure Net is the first principal
component of the network variables in Table 1. The EW (VW) columns employ the equal-weighted (value-weighted)
dealer centrality measures. For the C(N)DC-Nonsplit sample, Net is defined as the head or, alternatively, the tail
dealer’s centrality (indicated in the column header). The estimates are obtained from panel probit regressions with
issuer fixed effects.

(1) (2) (3) (4) (5) (6) (7) (8)
All C(N)DC-Nonsplit

CDC-Nonsplit All CDC Head Dealer Tail Dealer

EW VW EW VW EW VW EW VW

Net -0.98*** -1.00*** -1.02*** -1.04*** -0.72*** -0.83*** -0.84*** -0.87***
(-52.62) (-54.04) (-61.52) (-63.24) (-41.75) (-47.65) (-47.12) (-48.88)

logpar retail 0.11*** 0.11*** 0.09*** 0.09*** 0.10*** 0.10*** 0.10*** 0.10***
(31.37) (31.49) (28.35) (28.73) (31.24) (31.39) (31.03) (31.12)

logpar medsize 0.13*** 0.13*** 0.11*** 0.12*** 0.13*** 0.13*** 0.13*** 0.13***
(56.59) (57.04) (55.53) (56.14) (57.63) (57.84) (56.86) (57.22)

logpar lgsize 0.15*** 0.16*** 0.14*** 0.14*** 0.16*** 0.16*** 0.15*** 0.16***
(96.85) (98.80) (99.50) (101.51) (100.12) (101.45) (99.29) (101.04)

isgo 0.05*** 0.06*** 0.06*** 0.06*** 0.06*** 0.06*** 0.06*** 0.06***
(9.21) (9.33) (10.91) (11.11) (9.67) (9.85) (9.75) (9.90)

taxable -0.09*** -0.10*** -0.09*** -0.09*** -0.09*** -0.10*** -0.09*** -0.10***
(-5.43) (-5.59) (-6.05) (-6.22) (-5.52) (-5.76) (-5.70) (-5.84)

amt -0.12*** -0.12*** -0.13*** -0.13*** -0.12*** -0.12*** -0.12*** -0.12***
(-8.51) (-8.57) (-10.56) (-10.58) (-8.81) (-8.91) (-8.88) (-8.96)

Rating 0.00 0.00 0.00 0.00 0.00* 0.00 0.00 0.00
(0.86) (0.13) (1.43) (0.51) (1.88) (0.57) (0.90) (0.14)

logamt -0.02*** -0.02*** -0.03*** -0.03*** -0.03*** -0.02*** -0.03*** -0.02***
(-15.71) (-14.96) (-23.70) (-22.84) (-17.01) (-16.21) (-16.66) (-15.97)

callable -0.13*** -0.13*** -0.16*** -0.17*** -0.13*** -0.13*** -0.13*** -0.13***
(-18.08) (-18.10) (-26.95) (-27.05) (-18.64) (-18.67) (-18.70) (-18.70)

cons -1.72*** -1.70*** -1.62*** -1.60*** -1.97*** -1.86*** -1.85*** -1.82***
(-78.09) (-78.03) (-82.63) (-82.49) (-95.71) (-89.70) (-87.17) (-86.14)

N 2,958,219 2,958,219 4,060,191 4,060,191 3,219,080 3,219,080 3,220,393 3,220,393
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Table 10: Informational price efficiency and dealer centrality

The table documents the determinants of price efficiency. Information efficiency is measured by the MQL measure
described in Section 3. MQL is calculated separately for each bond using daily mid-price data; MQL is then collapsed
at the dealer level. Across columns, we vary the construction of the market quality measure MQL and the network
centrality measure Net. MQL is computed either based on daily midpoint or trade-by-trade price changes. In the
EW columns, the dealer centrality measure Net is defined as the first principle component of the equal-weighted
centrality proxies. In the VW columns, the dealer centrality measure Net is defined as the first principle component
of the value-weighted centrality proxies. The estimates are obtained from OLS regression with year fixed effects.
Standard errors are adjusted for heteroskedasticity and clustering at dealer level.

L = 1 L = 10

Midpoint Trade-by-trade Midpoint Trade-by-trade

EW VW EW VW EW VW EW VW

Net 0.08*** 0.12*** 0.05*** 0.07*** 0.05 0.06 * 0.08*** 0.10***
(2.72) (3.84) (5.82) (7.31) (1.33) (1.40) (7.42) (10.04)

cons 0.59*** 0.60*** 0.59*** 0.59*** 0.49*** 0.49**** 0.71*** 0.72***
(33.72) (34.04) (118.04) (122.88) (21.90) (21.59) (128.52) (136.46)

N 14,518 14,518 14,518 14,518 14,518 14,518 14,518 14,518

Table 11: Order flow and dealer centrality

The table documents the determinants of the daily order flow for each dealer. Number of trades and trade volumes
are aggregated at dealer-day level. Trade volume is log-transformed. The dealer centrality measure Net is the
first principal component of the network variables in Table 1. The EW (VW) columns employ the equal-weighted
(value-weighted) dealer centrality measures. The estimates account for day fixed effect.

Daily No. Trades Daily Trade Volume

EW VW EW VW

Net 78.29*** 79.92*** 8.21*** 8.36***
(399.75) (410.84) (1591.25) (1668.23)

cons -24.17*** -24.87*** -1.55*** -1.61***
(-213.33) (-221.20) (-519.25) (-556.55)

N 2,498,266 2,498,266 2,498,266 2,498,266
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Table 12: Dealer inventory and centrality
The table documents the determinants of the variability in dealers’ inventory. The absolute daily inventory change is
defined as the absolute value of the daily change in each dealer’s inventory level. The relative daily inventory change
is defined as the absolute value of the daily percentage change in each dealer’s inventory as a fraction of the daily
change over the 30-day moving average, |∆invt/ 1

30

∑30
i=1 invt−i|, truncated at 1,000 percent. Across columns, we

vary the variable Net describing the dealers’ network characteristics. The sample consists of all dealer inventories on
each day. The estimates are obtained from panel regressions with issuer fixed effects. Standard errors are adjusted
for heteroskedasticity and clustering.

Panel A: Descriptive statistics for dealer inventories

Mean S.D. Min Max Obs.

Absolute daily inventory change [$M] 0.503 5.814 0 5.577 2,381,530
Relative daily inventory change [%] 2.404 22.028 0 1,000 2,348,951

Panel B: Inventory variability

Absolute daily inventory change [$M] Relative daily inventory change [%]

EW VW EW VW

Net 2.39*** 2.60*** 4.32*** 4.36***
(5.63) (5.69) (10.46) (10.73)

cons -0.74*** -0.84*** 0.16 0.14
(-5.23) (-5.35) (1.10) (0.97)

N 2,381,530 2,381,530 2,348,951 2,348,951
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Table 13: Intermediation services and dealer centrality

The table documents the link between liquidity provision and dealer centrality. Columns (1)-(2) document the
determinants of the duration of time (in terms of number of days) that a bond remains in a dealer’s inventory.
The sample consists of all customer-dealer-customer (CDC) transactions. The estimates are obtained from panel
regressions with issuer fixed effects. Standard errors are adjusted for heteroskedasticity and clustering. Columns
(3)-(6) document the determinants of the propensity of prearranged trades. We consider two types of prearranged
trades, immediate and same day matches. Immediate matches have the same time stamp for dealer purchase and
sale (columns (3) and (4)). Same day matches are round-trip transactions where the dealer purchase and sale occur
on the same calendar day (columns (5) and (6)). The estimates account for year fixed effect. The dealer centrality
measure Net is the first principal component of the network variables in Table 1. The EW (VW) columns employ
the equal-weighted (value-weighted) dealer centrality measures.

(1) (2) (3) (4) (5) (6)
Inventory Duration Pr(Immediate Match) Pr(Same Day Match)

EW VW EW VW EW VW

Net 0.56*** 0.33*** -1.58*** -1.64*** -1.58*** -1.47***
(10.38) (6.08) (-140.89) (-148.68) (-167.42) (-159.81)

logpar retail -0.29*** -0.29*** 0.16*** 0.16*** 0.04*** 0.04***
(-56.66) (-56.56) (89.98) (90.63) (36.35) (35.99)

logpar medsize -0.35*** -0.35*** 0.15*** 0.15*** 0.10*** 0.10***
(-85.80) (-86.05) (119.66) (121.18) (126.06) (127.50)

logpar lgsize -0.26*** -0.27*** 0.10*** 0.11*** 0.12*** 0.13***
(-77.03) (-77.92) (103.28) (108.27) (180.17) (185.87)

isgo -0.03 -0.03 -0.00* -0.00 -0.00 -0.00
(-1.08) (-1.06) (-1.84) (-1.52) (-1.00) (-0.78)

taxable -0.56*** -0.56*** 0.26*** 0.26*** 0.29*** 0.29***
(-14.05) (-14.12) (32.13) (31.61) (50.74) (50.28)

amt -0.34*** -0.34*** 0.05*** 0.05*** 0.26*** 0.26***
(-9.04) (-9.05) (10.20) (9.99) (79.57) (79.32)

Rating 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
(6.30) (6.17) (36.58) (33.53) (33.35) (31.37)

logamt -0.37*** -0.37*** 0.06*** 0.06*** 0.10*** 0.11***
(-76.17) (-76.21) (80.28) (82.75) (220.71) (223.19)

callable -0.09*** -0.09*** -0.08*** -0.08*** 0.01*** 0.01***
(-4.68) (-4.66) (-19.01) (-19.03) (3.61) (3.61)

cons 3.37*** 3.59*** -0.59*** -0.55*** 0.60*** 0.50***
(54.58) (57.65) (-46.02) (-43.68) (59.72) (50.41)

N 2,929,570 2,929,570 2,917,162 2,917,162 2,917,162 2,917,162
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Table 14: Inter-dealer trading and dealer centrality

The table reports the average network centrality for each dealer in the intermediation chain. Agency trades in which
dealers act as customers’ agent instead of principle are eliminated. We restrict the sample to round-trips that involve
no more than 6 dealers and no order splitting, the C(N)DC-Nonsplit sample. We measure dealer centrality by the
first principle component pca1 of the centrality proxies described in Table 1, standardized by the empirical cdf.

Dealer #1 Dealer #2 Dealer #3 Dealer #4 Dealer #5 Dealer #6

CDC 0.949 . . . . .
CDDC 0.880 0.919 . . . .
CDDDC 0.880 0.977 0.901 . . .
CDDDDC 0.813 0.972 0.949 0.884 . .
CDDDDDC 0.845 0.975 0.934 0.959 0.875 .
CDDDDDDC 0.862 0.972 0.946 0.929 0.948 0.883
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Table 15: Order flow routing and dealer centrality

The table documents path lengths between pairs of dealers and relates them to the dealers’ network centrality. For

each round-trip intermediation chain with at least two dealers involved, the path length between them, measured by

the number of inter-dealer transactions, is calculated (ranging from one to five). In Panel A, we report the frequency

distribution of the path length for each possible pairing of the head and tail dealer. In Panel B, we report how the

frequency of each path length (dependent variable) is related to the network centrality of head and tail dealer. The

dependant variable is the number of dealer involved in the round-trip, with values from 1 to 6. The regressor CNet

(Head Dealer) denotes the cumulative ranking of the first principle component of dealer network variables of the first

dealer in the chain. The regressor CNet (Tail Dealer) denotes the cumulative ranking of the first principle component

of the dealer network variables of the last dealer in the chain. Specifications (1) and (2) include all round-trips.

Specifications (3) and (4) restrict the sample to round-trips with at least 2 dealers, so we can determine a head and a

tail dealer. Specifications (1) and (3) are estimated using panel regressions with issuer fixed effects. Standard errors

are adjusted for heteroskedasticity and clustering at the issuer level. Specifications (2) and (4) are estimated using

Poisson regressions with robust standard errors clustered at the issuer level.

Panel A: Average frequencies of different path lengths

N 1 Step 2 Steps 3 Steps 4 Steps 5 Steps

All 39,183 0.448 0.454 0.085 0.012 0.001
Frequency of trade between pair of dealers:
< 4 28,995 0.422 0.464 0.099 0.014 0.001
4− 9 5,951 0.523 0.423 0.046 0.007 0.001
≥ 10 4,237 0.526 0.426 0.041 0.007 0.001

Panel B: Number of dealers involved and network properties of head and tail dealers

(1) (2) (3) (4)
FE regression Poisson regression FE regression Poisson regression

CNet (Head Dealer) -0.94*** -0.69*** -0.21*** -0.08***
(-95.63) (-97.10) (-20.50) (-20.90)

CNet (Tail Dealer) -0.45*** -0.17***
(-33.02) (-35.15)

logpar retail 0.01*** 0.01*** 0.00** 0.00**
(17.40) (19.38) (2.37) (1.97)

logpar medsize 0.01*** 0.01*** -0.00** -0.00***
(28.58) (34.32) (-2.25) (-5.04)

logpar lgsize -0.00*** 0.00 0.01*** 0.00**
(-6.63) (0.92) (5.07) (2.09)

isgo 0.00 0.00*** -0.00 -0.02***
(0.99) (3.24) (-0.27) (-10.86)

taxable -0.04*** -0.02*** -0.03* -0.01**
(-10.41) (-8.39) (-1.90) (-2.32)

amt -0.02*** -0.01*** 0.00 0.01***
(-5.37) (-2.99) (0.07) (3.17)

Rating -0.00*** -0.00** 0.00*** 0.00***
(-4.54) (-1.97) (8.46) (16.31)

logamt -0.01*** -0.01*** -0.00*** -0.00**
(-18.57) (-21.12) (-3.57) (-2.09)

callable -0.00 0.00 0.07*** 0.02***
(-0.58) (0.61) (10.92) (8.76)

cons 2.01*** 0.76*** 3.03*** 1.12***
(206.85) (108.88) (165.02) (179.60)

N 3,226,416 3,226,416 260,366 260,366
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Table 16: Inventory spillovers across dealers

The table documents the extent of spillover effects in dealer inventories from connected dealers. The model we
consider for the inventory decision yi of dealer i is:

yi = α+ λ
∑
j 6=i

wijyj + β′Xi + εi,

where wij equals the connection strength between dealers i and j, and Xi is a set of explanatory variables. The
dependent variables are constructed as average values over the sample period. The model is estimated using maximum
likelihood (estimates from GMM/IV are similar and omitted).

Inventory No. Trades ∆Inventory SD(∆Inventory)

λ 0.10 0.04 0.09 0.13
(6.26) (3.22) (6.45) (8.71)

Constant 6.61 2.50 6.04 -2.12
(0.83) (1.05) (0.97) (-1.49)

σ 242.57 51.29 185.84 37.95
(25.21) (25.21) (25.21) (25.21)

N 1,271 1,271 1,271 1,271
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Table 17: Dealer bargaining power and centrality
The table documents the determinants of dealers’ bargaining power. We vary the regression sample across columns,
considering three types of trades with varying dealer involvement. CDC-Nonsplits are round-trips intermediated by
a single dealer where the original bond lot is not split. The All CDC sample includes all round-trips intermediated
by a single dealer. C(N)DC-Nonsplit are round-trips intermediated by one or several dealers where the original
bond lot is not split. The dealer centrality measure Net is the first principal component of the network variables in
Table 1. The EW (VW) columns employ the equal-weighted (value-weighted) dealer centrality measures. For the
C(N)DC-Nonsplit sample, Net is defined as the head or, alternatively, the tail dealer’s centrality (indicated in the
column header). The estimates are obtained from stochastic frontier regressions.

(1) (2) (3) (4) (5) (6) (7) (8)
All C(N)DC-Nonsplit

CDC-Nonsplit All CDC Head Dealer Tail Dealer

EW VW EW VW EW VW EW VW

Panel A: Intermediation cost function
Net 0.39*** 0.56*** 0.11*** 0.22*** 0.28*** 0.49*** 0.34*** 0.47***

(47.44) (62.94) (17.98) (30.92) (39.62) (61.48) (45.37) (60.83)

logpar retail -0.50*** -0.50*** -0.03*** -0.03*** -0.49*** -0.48*** -0.49*** -0.48***
(-379.54) (-379.20) (-15.33) (-14.67) (-368.73) (-370.63) (-370.57) (-370.25)

logpar medsize -0.46*** -0.46*** -0.27*** -0.27*** -0.46*** -0.45*** -0.46*** -0.45***
(-490.93) (-488.70) (-243.11) (-241.86) (-500.34) (-499.85) (-501.02) (-499.87)

logpar lgsize -0.32*** -0.32*** -0.20*** -0.20*** -0.32*** -0.32*** -0.32*** -0.32***
(-456.13) (-455.91) (-249.02) (-248.33) (-469.37) (-470.12) (-469.53) (-469.92)

isgo -0.07*** -0.07*** -0.08*** -0.08*** -0.07*** -0.07*** -0.07*** -0.07***
(-80.91) (-80.19) (-97.43) (-97.08) (-84.20) (-83.38) (-84.08) (-83.42)

taxable 0.07*** 0.07*** 0.09*** 0.09*** 0.07*** 0.08*** 0.07*** 0.08***
(23.16) (23.95) (36.73) (37.18) (25.11) (25.91) (25.15) (25.80)

amt 0.23*** 0.23*** 0.21*** 0.21*** 0.23*** 0.23*** 0.23*** 0.23***
(108.75) (108.56) (118.96) (118.75) (112.16) (112.10) (112.25) (112.11)

Rating 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
(45.71) (47.10) (46.33) (47.68) (47.88) (50.10) (49.53) (50.11)

logamt 0.03*** 0.03*** 0.04*** 0.04*** 0.03*** 0.03*** 0.03*** 0.03***
(101.60) (97.85) (168.92) (165.45) (101.03) (97.56) (100.55) (97.61)

callable 0.16*** 0.16*** 0.20*** 0.20*** 0.16*** 0.16*** 0.16*** 0.16***
(111.28) (111.73) (137.91) (137.92) (116.75) (117.23) (116.91) (117.25)

Panel B: Dealer bargaining power (One-sided error component)
Net 0.50*** 0.15*** 2.64*** 2.21*** -0.14*** -0.39*** -0.01 -0.33***

(20.53) (6.33) (99.36) (77.89) (-7.64) (-20.11) (-0.54) (-16.91)

logpar retail 0.17*** 0.16*** -0.59*** -0.60*** 0.15*** 0.15*** 0.15*** 0.15***
(55.14) (53.08) (-89.07) (-88.39) (50.33) (48.92) (50.57) (49.05)

logpar medsize 0.01*** 0.00* -0.12*** -0.13*** 0.01*** 0.00** 0.01*** 0.01**
(5.42) (1.74) (-38.06) (-39.19) (4.98) (2.01) (5.22) (2.49)

logpar lgsize -0.16*** -0.17*** -0.23*** -0.24*** -0.17*** -0.17*** -0.16*** -0.17***
(-81.38) (-85.48) (-97.40) (-99.48) (-88.03) (-90.81) (-87.88) (-90.57)

Panel C: Resale price risk (Symmetric error component)
Net -0.24*** 0.20*** -1.17*** -1.07*** -0.27*** 0.11*** -0.26*** 0.10***

(-8.41) (6.54) (-83.93) (-78.38) (-11.30) (3.92) (-10.19) (3.72)

logpar retail -0.80*** -0.80*** 0.15*** 0.14*** -0.76*** -0.76*** -0.76*** -0.76***
(-201.79) (-204.08) (54.49) (53.41) (-197.17) (-199.87) (-198.82) (-199.59)

logpar medsize -1.05*** -1.04*** -0.64*** -0.64*** -1.01*** -1.01*** -1.01*** -1.01***
(-339.22) (-339.75) (-324.07) (-324.55) (-351.34) (-352.35) (-351.70) (-351.81)

logpar lgsize -0.65*** -0.65*** -0.45*** -0.46*** -0.64*** -0.64*** -0.64*** -0.64***
(-252.18) (-252.97) (-275.39) (-275.68) (-261.44) (-262.07) (-261.65) (-261.87)

N 2,933,867 2,933,867 4,023,515 4,023,515 3,184,913 3,184,913 3,186,180 3,186,180
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Figure 1: Dealer network topology

The figure illustrates the network structure of dealers in the municipal bond market in terms of the order flow between

the dealers. Each node represents a dealer firm. Each arrow represents directed order flow between a pair of dealers.

In Panel A, we impose the restriction that order flow between two dealers exceeds 10,000 transactions over the sample

period. In Panel B, we plot the dealer network using all transactions. The plots are generated using multidimensional

scaling.

Panel A: Order flow among most active dealers
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Figure 2: Market connectedness

The figure documents the connectedness of the market. We plot the inverse distribution function for the degree

across dealers in the network. The black dots correspond to the out-degree, the red dots represent in-degrees. For

comparison, we add the degree distribution of a random trading network (blue dashed line) and a scale-free trading

network (black and red dashed lines).
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Figure 3: Market hierarchy

The figure documents the hierarchical structure of the market. We plot the degree distribution across dealers in the

network (horizontal axis) against the clustering coefficient of each dealer (vertical axis).
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Figure 4: Market resilience

The figure documents the effect on the network structure of default by dealers. We plot the relative size of the largest

connected subgraph (so-called giant component) as function of the number of dealers that default. We consider two

scenarios. The blue line corresponds to the network connectedness when dealers default at random. The red line

corresponds to the network connectedness when the most connected dealers default first. In Panel A, the horizontal

axis measures the number of defaulted dealers as a fraction of all dealers. In Panel B, the defaulted dealers are sorted

on the horizontal axis according to their degree.
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Figure 5: Trading costs and dealer centrality

The figure documents trading cost and volume by dealer and size. The sample consists of all CDC-Nonsplit transac-

tions.
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